Flagellar waveform and rotational orientation in a Chlamydomonas mutant lacking normal striated fibers

H. J. Hoops, R. L. Wright, J. W. Jarvik, G. B. Witman

Research output: Contribution to journalArticle

26 Citations (Scopus)

Abstract

The Chlamydomonas mutant vfl-3 lacks normal striated fibers and microtubular rootlets. Although the flagella beat vigorously, the cells rarely display effective forward swimming. High speed cinephotomicrography reveals that flagellar waveform, frequency, and beat synchrony are similar to those of wild-type cells, indicating that neither striated fibers nor microtubular rootlets are required for initiation or synchronization of flagellar motion. However, in contrast to wild type, the effective strokes of the flagella of vfl-3 may occur in virtually any direction. Although the direction of beat varies between cells, it was not observed to vary for a given flagellum during periods of filming lasting up to several thousand beat cycles, indicating that the flagella are not free to rotate in the mature cell. Structural polarity markers in the proximal portion of each flagellum show that the flagella of the mutant have an altered rotational orientation consistent with their altered direction of beat. This implies that the variable direction of beat is not due to a defect in the intrinsic polarity of the axoneme, and that in wild-type cells the striated fibers and/or associated structures are important in establishing or maintaining the correct rotational orientation of the basal bodies to ensure that the inherent functional polarity of the flagellum results in effective cellular movement. As in wild type, the flagella of vfl-3 coordinately switch to a symmetrical, flagellar-type waveform during the shock response (induced by a sudden increase in illumination), indicating that the striated fibers are not directly involved in this process.

Original languageEnglish (US)
Pages (from-to)818-824
Number of pages7
JournalJournal of Cell Biology
Volume98
Issue number3
DOIs
StatePublished - Jan 1 1984

Fingerprint

Chlamydomonas
Flagella
Basal Bodies
Axoneme
Lighting
Shock
Stroke
Direction compound

Cite this

Flagellar waveform and rotational orientation in a Chlamydomonas mutant lacking normal striated fibers. / Hoops, H. J.; Wright, R. L.; Jarvik, J. W.; Witman, G. B.

In: Journal of Cell Biology, Vol. 98, No. 3, 01.01.1984, p. 818-824.

Research output: Contribution to journalArticle

@article{a5e328d19cb7463888267d0fc49e0277,
title = "Flagellar waveform and rotational orientation in a Chlamydomonas mutant lacking normal striated fibers",
abstract = "The Chlamydomonas mutant vfl-3 lacks normal striated fibers and microtubular rootlets. Although the flagella beat vigorously, the cells rarely display effective forward swimming. High speed cinephotomicrography reveals that flagellar waveform, frequency, and beat synchrony are similar to those of wild-type cells, indicating that neither striated fibers nor microtubular rootlets are required for initiation or synchronization of flagellar motion. However, in contrast to wild type, the effective strokes of the flagella of vfl-3 may occur in virtually any direction. Although the direction of beat varies between cells, it was not observed to vary for a given flagellum during periods of filming lasting up to several thousand beat cycles, indicating that the flagella are not free to rotate in the mature cell. Structural polarity markers in the proximal portion of each flagellum show that the flagella of the mutant have an altered rotational orientation consistent with their altered direction of beat. This implies that the variable direction of beat is not due to a defect in the intrinsic polarity of the axoneme, and that in wild-type cells the striated fibers and/or associated structures are important in establishing or maintaining the correct rotational orientation of the basal bodies to ensure that the inherent functional polarity of the flagellum results in effective cellular movement. As in wild type, the flagella of vfl-3 coordinately switch to a symmetrical, flagellar-type waveform during the shock response (induced by a sudden increase in illumination), indicating that the striated fibers are not directly involved in this process.",
author = "Hoops, {H. J.} and Wright, {R. L.} and Jarvik, {J. W.} and Witman, {G. B.}",
year = "1984",
month = "1",
day = "1",
doi = "10.1083/jcb.98.3.818",
language = "English (US)",
volume = "98",
pages = "818--824",
journal = "Journal of Cell Biology",
issn = "0021-9525",
publisher = "Rockefeller University Press",
number = "3",

}

TY - JOUR

T1 - Flagellar waveform and rotational orientation in a Chlamydomonas mutant lacking normal striated fibers

AU - Hoops, H. J.

AU - Wright, R. L.

AU - Jarvik, J. W.

AU - Witman, G. B.

PY - 1984/1/1

Y1 - 1984/1/1

N2 - The Chlamydomonas mutant vfl-3 lacks normal striated fibers and microtubular rootlets. Although the flagella beat vigorously, the cells rarely display effective forward swimming. High speed cinephotomicrography reveals that flagellar waveform, frequency, and beat synchrony are similar to those of wild-type cells, indicating that neither striated fibers nor microtubular rootlets are required for initiation or synchronization of flagellar motion. However, in contrast to wild type, the effective strokes of the flagella of vfl-3 may occur in virtually any direction. Although the direction of beat varies between cells, it was not observed to vary for a given flagellum during periods of filming lasting up to several thousand beat cycles, indicating that the flagella are not free to rotate in the mature cell. Structural polarity markers in the proximal portion of each flagellum show that the flagella of the mutant have an altered rotational orientation consistent with their altered direction of beat. This implies that the variable direction of beat is not due to a defect in the intrinsic polarity of the axoneme, and that in wild-type cells the striated fibers and/or associated structures are important in establishing or maintaining the correct rotational orientation of the basal bodies to ensure that the inherent functional polarity of the flagellum results in effective cellular movement. As in wild type, the flagella of vfl-3 coordinately switch to a symmetrical, flagellar-type waveform during the shock response (induced by a sudden increase in illumination), indicating that the striated fibers are not directly involved in this process.

AB - The Chlamydomonas mutant vfl-3 lacks normal striated fibers and microtubular rootlets. Although the flagella beat vigorously, the cells rarely display effective forward swimming. High speed cinephotomicrography reveals that flagellar waveform, frequency, and beat synchrony are similar to those of wild-type cells, indicating that neither striated fibers nor microtubular rootlets are required for initiation or synchronization of flagellar motion. However, in contrast to wild type, the effective strokes of the flagella of vfl-3 may occur in virtually any direction. Although the direction of beat varies between cells, it was not observed to vary for a given flagellum during periods of filming lasting up to several thousand beat cycles, indicating that the flagella are not free to rotate in the mature cell. Structural polarity markers in the proximal portion of each flagellum show that the flagella of the mutant have an altered rotational orientation consistent with their altered direction of beat. This implies that the variable direction of beat is not due to a defect in the intrinsic polarity of the axoneme, and that in wild-type cells the striated fibers and/or associated structures are important in establishing or maintaining the correct rotational orientation of the basal bodies to ensure that the inherent functional polarity of the flagellum results in effective cellular movement. As in wild type, the flagella of vfl-3 coordinately switch to a symmetrical, flagellar-type waveform during the shock response (induced by a sudden increase in illumination), indicating that the striated fibers are not directly involved in this process.

UR - http://www.scopus.com/inward/record.url?scp=0021324493&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0021324493&partnerID=8YFLogxK

U2 - 10.1083/jcb.98.3.818

DO - 10.1083/jcb.98.3.818

M3 - Article

C2 - 6699086

AN - SCOPUS:0021324493

VL - 98

SP - 818

EP - 824

JO - Journal of Cell Biology

JF - Journal of Cell Biology

SN - 0021-9525

IS - 3

ER -