TY - JOUR
T1 - Five-year vegetation control effects on aboveground biomass and nitrogen content and allocation in Douglas-fir plantations on three contrasting sites
AU - Devine, Warren D.
AU - Harrington, Timothy B.
AU - Terry, Thomas A.
AU - Harrison, Robert B.
AU - Slesak, Robert A.
AU - Peter, David H.
AU - Harrington, Constance A.
AU - Shilling, Carol J.
AU - Schoenholtz, Stephen H.
PY - 2011/12/15
Y1 - 2011/12/15
N2 - Despite widespread use of intensive vegetation control (VC) in forest management, the effects of VC on allocation of biomass and nutrients between young trees and competing vegetation are not well understood. On three Pacific Northwest sites differing in productivity, soil parent material, and understory vegetation community, we evaluated year-5 effects of presence/absence of 5years of VC on allocation of aboveground biomass and nitrogen (N) between planted Douglas-fir (Pseudotsuga menziesii var. menziesii) and competing vegetation. Equations for predicting bole, branch, foliar, and total dry weights based on stem diameter at a height of 15cm and total tree height did not differ significantly among sites or by presence or absence of VC. This contrasts with previous research, using diameter at breast height rather than at 15cm, which found that separate equations were warranted for trees with and without competing vegetation. Estimated whole-tree biomass among the six site/VC combinations ranged from 0.8 to 7.5Mgha-1, and increases in tree biomass associated with VC ranged from 62% to 173% among sites. Among the three sites, there were positive, linear relationships between soil total N content to a depth of 60cm and both N content of aboveground vegetation (trees plus competing vegetation) and Douglas-fir foliar N concentration. Tree N content increased by 8.4, 8.2, and 40.0kgNha-1 with VC at the three sites, whereas competing vegetation N content decreased with VC by 0.9, 18.8, and 32.0kgNha-1, respectively, at the same sites. Thus, VC did not lead to a direct compensatory tradeoff between aboveground N content of trees and other vegetation. However, soil N content was linearly related to N accumulation and plant growth across the three sites. In addition to differences in N availability among sites, the effect of VC on the redistribution of resources among trees and competing vegetation also was influenced by vegetation community composition and efficacy of VC treatments.
AB - Despite widespread use of intensive vegetation control (VC) in forest management, the effects of VC on allocation of biomass and nutrients between young trees and competing vegetation are not well understood. On three Pacific Northwest sites differing in productivity, soil parent material, and understory vegetation community, we evaluated year-5 effects of presence/absence of 5years of VC on allocation of aboveground biomass and nitrogen (N) between planted Douglas-fir (Pseudotsuga menziesii var. menziesii) and competing vegetation. Equations for predicting bole, branch, foliar, and total dry weights based on stem diameter at a height of 15cm and total tree height did not differ significantly among sites or by presence or absence of VC. This contrasts with previous research, using diameter at breast height rather than at 15cm, which found that separate equations were warranted for trees with and without competing vegetation. Estimated whole-tree biomass among the six site/VC combinations ranged from 0.8 to 7.5Mgha-1, and increases in tree biomass associated with VC ranged from 62% to 173% among sites. Among the three sites, there were positive, linear relationships between soil total N content to a depth of 60cm and both N content of aboveground vegetation (trees plus competing vegetation) and Douglas-fir foliar N concentration. Tree N content increased by 8.4, 8.2, and 40.0kgNha-1 with VC at the three sites, whereas competing vegetation N content decreased with VC by 0.9, 18.8, and 32.0kgNha-1, respectively, at the same sites. Thus, VC did not lead to a direct compensatory tradeoff between aboveground N content of trees and other vegetation. However, soil N content was linearly related to N accumulation and plant growth across the three sites. In addition to differences in N availability among sites, the effect of VC on the redistribution of resources among trees and competing vegetation also was influenced by vegetation community composition and efficacy of VC treatments.
KW - Biomass
KW - Carbon
KW - Competition
KW - Douglas-fir
KW - Nitrogen
KW - Plantation
UR - http://www.scopus.com/inward/record.url?scp=80055007722&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=80055007722&partnerID=8YFLogxK
U2 - 10.1016/j.foreco.2011.08.010
DO - 10.1016/j.foreco.2011.08.010
M3 - Article
AN - SCOPUS:80055007722
VL - 262
SP - 2187
EP - 2198
JO - Forest Ecology and Management
JF - Forest Ecology and Management
SN - 0378-1127
IS - 12
ER -