First-principles calculations of liquid CdTe at temperatures above and below the melting point

Vitaliy V. Godlevsky, Manish Jain, Jeffrey J. Derby, James R. Chelikowsky

Research output: Contribution to journalArticlepeer-review

48 Scopus citations


We perform ab initio molecular-dynamics simulations of CdTe at three different temperatures: 800 K (supercooled state), 1370 K (near the melting temperature), and 3000 K (superheated state). In agreement with experiment, we find that upon the melting, CdTe experiences a semiconducto r semiconductor transition. In its liquid state, CdTe retains its tetrahedral environment with the coordination number 4. We find that heating CdTe much above its melting point leads to substantial structural changes with a transformation to a more close-packed atomic structure. The coordination number of the superheated phase is 6 and the dc electrical conductivity is an order of magnitude larger than at the melting temperature. This, along with the disappearance of the finite band gap, suggests a gradual semiconducto r metal transition in the CdTe system at a temperature higher than melting point. We also find in liquid CdTe, near the melting temperature, atoms of Te form infinite branched chains. Short and simplified chains are still present in the supercooled phase. As the temperature increases, chains break, become shorter, and, eventually, transform to form close-packed clusters in the supeheated state. We also examine dynamical and electronic properties of the CdTe system.

Original languageEnglish (US)
Pages (from-to)8640-8649
Number of pages10
JournalPhysical Review B - Condensed Matter and Materials Physics
Issue number12
StatePublished - 1999


Dive into the research topics of 'First-principles calculations of liquid CdTe at temperatures above and below the melting point'. Together they form a unique fingerprint.

Cite this