TY - JOUR
T1 - First-Matsubara-frequency rule in a Fermi liquid. II. Optical conductivity and comparison to experiment
AU - Maslov, Dmitrii L.
AU - Chubukov, Andrey V.
PY - 2012/10/19
Y1 - 2012/10/19
N2 - Motivated by recent optical measurements on a number of strongly correlated electron systems, we revisit the dependence of the conductivity of a Fermi liquid σ(Ω,T) on the frequency Ω and temperature T. Using the Kubo formalism and taking full account of vertex corrections, we show that the Fermi-liquid form Reσ -1(Ω,T)Omega;2+4π2T2 holds under very general conditions, namely, in any dimensionality above one, for a Fermi surface of an arbitrary shape (but away from nesting and van Hove singularities), and to any order in the electron-electron interaction. We also show that the scaling form of Reσ -1(Ω,T) is determined by the analytic properties of the conductivity along the Matsubara axis. If a system contains not only itinerant electrons but also localized degrees of freedom which scatter electrons elastically, e.g., magnetic moments or resonant levels, the scaling form changes to Reσ -1(Ω,T) Ω2+bπ2T2, with 1≤b<. For purely elastic scattering, b=1. Our analysis implies that the value of b1, reported for URu 2Si 2 and some rare-earth-based doped Mott insulators, indicates that the optical conductivity in these materials is controlled by an elastic scattering mechanism, whereas the values of b2.3 and 5.6, reported for underdoped cuprates and organics, correspondingly, imply that both elastic and inelastic mechanisms contribute to the optical conductivity.
AB - Motivated by recent optical measurements on a number of strongly correlated electron systems, we revisit the dependence of the conductivity of a Fermi liquid σ(Ω,T) on the frequency Ω and temperature T. Using the Kubo formalism and taking full account of vertex corrections, we show that the Fermi-liquid form Reσ -1(Ω,T)Omega;2+4π2T2 holds under very general conditions, namely, in any dimensionality above one, for a Fermi surface of an arbitrary shape (but away from nesting and van Hove singularities), and to any order in the electron-electron interaction. We also show that the scaling form of Reσ -1(Ω,T) is determined by the analytic properties of the conductivity along the Matsubara axis. If a system contains not only itinerant electrons but also localized degrees of freedom which scatter electrons elastically, e.g., magnetic moments or resonant levels, the scaling form changes to Reσ -1(Ω,T) Ω2+bπ2T2, with 1≤b<. For purely elastic scattering, b=1. Our analysis implies that the value of b1, reported for URu 2Si 2 and some rare-earth-based doped Mott insulators, indicates that the optical conductivity in these materials is controlled by an elastic scattering mechanism, whereas the values of b2.3 and 5.6, reported for underdoped cuprates and organics, correspondingly, imply that both elastic and inelastic mechanisms contribute to the optical conductivity.
UR - http://www.scopus.com/inward/record.url?scp=84867811778&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84867811778&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.86.155137
DO - 10.1103/PhysRevB.86.155137
M3 - Article
AN - SCOPUS:84867811778
SN - 1098-0121
VL - 86
JO - Physical Review B - Condensed Matter and Materials Physics
JF - Physical Review B - Condensed Matter and Materials Physics
IS - 15
M1 - 155137
ER -