Finite element model updating of composite flying-wing aircraft using global/local optimization

Wei Zhao, Abhineet Gupta, Jitish Miglani, Chris Regan, Rakesh K. Kapania, Peter J Seiler Jr

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Citations (Scopus)

Abstract

This paper presents a novel global/local optimization approach for finite element model updating of a composite flying-wing aircraft that used subcomponent-based test data. Three-steps are considered to update the mass and stiffness distributions for use in the finite element model updating of the composite flying-wing aircraft. Steps I and II, i.e., local optimizations, update the mass distribution for the centerbody and the individual wings of the aircraft, respectively, to match their mass properties with the test data. The individual wing stiffness distribution is also updated in Step II by using available wing’s ground vibration test results. The updated finite element models for the centerbody and the wings are then assembled as the initial finite element model for the full aircraft model, in Step III, i.e., global optimization. This initial finite element model is then updated using available experimental mass properties and ground vibration test modal results for the full aircraft. The global/local optimization iterations continue till the differences between the test data and numerical results for models of both full aircraft and subcomponents are less than given criteria. The proposed approach on finite element model updating is applied for a composite flying-wing aircraft, mAEWing2, used in the NASA Performance Adaptive Aeroelastic Wing program. Results show that the mass and modal results for the updated finite element models of the components and the full model agree well with the test results. The updated finite element model is also verified by comparing its static deformations and tip accelerations frequency response function with the test results. A good agreement is observed between the finite element analysis and test results.

Original languageEnglish (US)
Title of host publicationAIAA Scitech 2019 Forum
PublisherAmerican Institute of Aeronautics and Astronautics Inc, AIAA
ISBN (Print)9781624105784
DOIs
StatePublished - Jan 1 2019
EventAIAA Scitech Forum, 2019 - San Diego, United States
Duration: Jan 7 2019Jan 11 2019

Publication series

NameAIAA Scitech 2019 Forum

Conference

ConferenceAIAA Scitech Forum, 2019
CountryUnited States
CitySan Diego
Period1/7/191/11/19

Fingerprint

Composite materials
Aircraft
Stiffness
Aircraft models
Global optimization
Frequency response
NASA
Finite element method

Cite this

Zhao, W., Gupta, A., Miglani, J., Regan, C., Kapania, R. K., & Seiler Jr, P. J. (2019). Finite element model updating of composite flying-wing aircraft using global/local optimization. In AIAA Scitech 2019 Forum (AIAA Scitech 2019 Forum). American Institute of Aeronautics and Astronautics Inc, AIAA. https://doi.org/10.2514/6.2019-1814

Finite element model updating of composite flying-wing aircraft using global/local optimization. / Zhao, Wei; Gupta, Abhineet; Miglani, Jitish; Regan, Chris; Kapania, Rakesh K.; Seiler Jr, Peter J.

AIAA Scitech 2019 Forum. American Institute of Aeronautics and Astronautics Inc, AIAA, 2019. (AIAA Scitech 2019 Forum).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Zhao, W, Gupta, A, Miglani, J, Regan, C, Kapania, RK & Seiler Jr, PJ 2019, Finite element model updating of composite flying-wing aircraft using global/local optimization. in AIAA Scitech 2019 Forum. AIAA Scitech 2019 Forum, American Institute of Aeronautics and Astronautics Inc, AIAA, AIAA Scitech Forum, 2019, San Diego, United States, 1/7/19. https://doi.org/10.2514/6.2019-1814
Zhao W, Gupta A, Miglani J, Regan C, Kapania RK, Seiler Jr PJ. Finite element model updating of composite flying-wing aircraft using global/local optimization. In AIAA Scitech 2019 Forum. American Institute of Aeronautics and Astronautics Inc, AIAA. 2019. (AIAA Scitech 2019 Forum). https://doi.org/10.2514/6.2019-1814
Zhao, Wei ; Gupta, Abhineet ; Miglani, Jitish ; Regan, Chris ; Kapania, Rakesh K. ; Seiler Jr, Peter J. / Finite element model updating of composite flying-wing aircraft using global/local optimization. AIAA Scitech 2019 Forum. American Institute of Aeronautics and Astronautics Inc, AIAA, 2019. (AIAA Scitech 2019 Forum).
@inproceedings{7f9095f56f6043e89582a7cb2506e17e,
title = "Finite element model updating of composite flying-wing aircraft using global/local optimization",
abstract = "This paper presents a novel global/local optimization approach for finite element model updating of a composite flying-wing aircraft that used subcomponent-based test data. Three-steps are considered to update the mass and stiffness distributions for use in the finite element model updating of the composite flying-wing aircraft. Steps I and II, i.e., local optimizations, update the mass distribution for the centerbody and the individual wings of the aircraft, respectively, to match their mass properties with the test data. The individual wing stiffness distribution is also updated in Step II by using available wing’s ground vibration test results. The updated finite element models for the centerbody and the wings are then assembled as the initial finite element model for the full aircraft model, in Step III, i.e., global optimization. This initial finite element model is then updated using available experimental mass properties and ground vibration test modal results for the full aircraft. The global/local optimization iterations continue till the differences between the test data and numerical results for models of both full aircraft and subcomponents are less than given criteria. The proposed approach on finite element model updating is applied for a composite flying-wing aircraft, mAEWing2, used in the NASA Performance Adaptive Aeroelastic Wing program. Results show that the mass and modal results for the updated finite element models of the components and the full model agree well with the test results. The updated finite element model is also verified by comparing its static deformations and tip accelerations frequency response function with the test results. A good agreement is observed between the finite element analysis and test results.",
author = "Wei Zhao and Abhineet Gupta and Jitish Miglani and Chris Regan and Kapania, {Rakesh K.} and {Seiler Jr}, {Peter J}",
year = "2019",
month = "1",
day = "1",
doi = "10.2514/6.2019-1814",
language = "English (US)",
isbn = "9781624105784",
series = "AIAA Scitech 2019 Forum",
publisher = "American Institute of Aeronautics and Astronautics Inc, AIAA",
booktitle = "AIAA Scitech 2019 Forum",

}

TY - GEN

T1 - Finite element model updating of composite flying-wing aircraft using global/local optimization

AU - Zhao, Wei

AU - Gupta, Abhineet

AU - Miglani, Jitish

AU - Regan, Chris

AU - Kapania, Rakesh K.

AU - Seiler Jr, Peter J

PY - 2019/1/1

Y1 - 2019/1/1

N2 - This paper presents a novel global/local optimization approach for finite element model updating of a composite flying-wing aircraft that used subcomponent-based test data. Three-steps are considered to update the mass and stiffness distributions for use in the finite element model updating of the composite flying-wing aircraft. Steps I and II, i.e., local optimizations, update the mass distribution for the centerbody and the individual wings of the aircraft, respectively, to match their mass properties with the test data. The individual wing stiffness distribution is also updated in Step II by using available wing’s ground vibration test results. The updated finite element models for the centerbody and the wings are then assembled as the initial finite element model for the full aircraft model, in Step III, i.e., global optimization. This initial finite element model is then updated using available experimental mass properties and ground vibration test modal results for the full aircraft. The global/local optimization iterations continue till the differences between the test data and numerical results for models of both full aircraft and subcomponents are less than given criteria. The proposed approach on finite element model updating is applied for a composite flying-wing aircraft, mAEWing2, used in the NASA Performance Adaptive Aeroelastic Wing program. Results show that the mass and modal results for the updated finite element models of the components and the full model agree well with the test results. The updated finite element model is also verified by comparing its static deformations and tip accelerations frequency response function with the test results. A good agreement is observed between the finite element analysis and test results.

AB - This paper presents a novel global/local optimization approach for finite element model updating of a composite flying-wing aircraft that used subcomponent-based test data. Three-steps are considered to update the mass and stiffness distributions for use in the finite element model updating of the composite flying-wing aircraft. Steps I and II, i.e., local optimizations, update the mass distribution for the centerbody and the individual wings of the aircraft, respectively, to match their mass properties with the test data. The individual wing stiffness distribution is also updated in Step II by using available wing’s ground vibration test results. The updated finite element models for the centerbody and the wings are then assembled as the initial finite element model for the full aircraft model, in Step III, i.e., global optimization. This initial finite element model is then updated using available experimental mass properties and ground vibration test modal results for the full aircraft. The global/local optimization iterations continue till the differences between the test data and numerical results for models of both full aircraft and subcomponents are less than given criteria. The proposed approach on finite element model updating is applied for a composite flying-wing aircraft, mAEWing2, used in the NASA Performance Adaptive Aeroelastic Wing program. Results show that the mass and modal results for the updated finite element models of the components and the full model agree well with the test results. The updated finite element model is also verified by comparing its static deformations and tip accelerations frequency response function with the test results. A good agreement is observed between the finite element analysis and test results.

UR - http://www.scopus.com/inward/record.url?scp=85069000140&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85069000140&partnerID=8YFLogxK

U2 - 10.2514/6.2019-1814

DO - 10.2514/6.2019-1814

M3 - Conference contribution

AN - SCOPUS:85069000140

SN - 9781624105784

T3 - AIAA Scitech 2019 Forum

BT - AIAA Scitech 2019 Forum

PB - American Institute of Aeronautics and Astronautics Inc, AIAA

ER -