Abstract
The physicochemical properties of cassava residues subjected to microwave (or steam)-heated acid pretreatment (MHAP or SHAP) were comparatively investigated to improve fermentative hydrogen and methane cogeneration. The hydrogen yield from cassava residues with MHAP and enzymolysis was higher (106.2. mL/g TVS) than that with SHAP and enzymolysis (102.1. mL/g TVS), whereas the subsequent methane yields showed opposite results (75.4 and 93.2. mL/g TVS). Total energy conversion efficiency increased to 24.7%. Scanning electron microscopy images revealed MHAP generated numerous regular micropores (~6. μm) and SHAP generated irregular fragments (~23. μm) in the destroyed lignocellulose matrix. Transmission electron microscopy images showed SHAP generated wider cracks (~0.2. μm) in delaminated cell walls than MHAP (~0.1. μm). X-ray diffraction patterns indicated MHAP caused a higher crystallinity index (33.00) than SHAP (25.88), due to the deconstruction of amorphous cellulose. Fourier transform infrared spectroscopy indicated MHAP caused a higher crystallinity coefficient (1.20) than SHAP (1.12).
Original language | English (US) |
---|---|
Pages (from-to) | 407-413 |
Number of pages | 7 |
Journal | Bioresource Technology |
Volume | 179 |
DOIs | |
State | Published - Mar 1 2015 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2014 Elsevier Ltd.
Keywords
- Cassava residue
- Hydrogen
- Methane
- Microwave-heated acid
- Steam-heated acid