Faster bi-stable visual switching in psychosis

Research output: Contribution to journalArticlepeer-review

Abstract

Bi-stable stimuli evoke two distinct perceptual interpretations that alternate and compete for dominance. Bi-stable perception is thought to be driven at least in part by mutual suppression between distinct neural populations that represent each percept. Abnormal visual perception has been observed among people with psychotic psychopathology (PwPP), and there is evidence to suggest that these visual deficits may depend on impaired neural suppression in the visual cortex. However, it is not yet clear whether bi-stable visual perception is abnormal among PwPP. Here, we examined bi-stable perception in a visual structure-from-motion task using a rotating cylinder illusion in a group of 65 PwPP, 44 first-degree biological relatives, and 43 healthy controls. Data from a ‘real switch’ task, in which physical depth cues signaled real switches in rotation direction were used to exclude individuals who did not show adequate task performance. In addition, we measured concentrations of neurochemicals, including glutamate, glutamine, and γ-amino butyric acid (GABA), involved in excitatory and inhibitory neurotransmission. These neurochemicals were measured non-invasively in the visual cortex using 7 tesla MR spectroscopy. We found that PwPP and their relatives showed faster bi-stable switch rates than healthy controls. Faster switch rates also correlated with significantly higher psychiatric symptom levels, specifically disorganization, across all participants. However, we did not observe any significant relationships across individuals between neurochemical concentrations and SFM switch rates. Our results are consistent with a reduction in suppressive neural processes during structure-from-motion perception in PwPP, and suggest that genetic liability for psychosis is associated with disrupted bi-stable perception.

Original languageEnglish (US)
Article number201
JournalTranslational psychiatry
Volume14
Issue number1
DOIs
StatePublished - Dec 2024

Bibliographical note

Publisher Copyright:
© The Author(s) 2024.

PubMed: MeSH publication types

  • Journal Article
  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural

Fingerprint

Dive into the research topics of 'Faster bi-stable visual switching in psychosis'. Together they form a unique fingerprint.

Cite this