TY - JOUR

T1 - Families of classical subgroup separable superintegrable systems

AU - Kalnins, E. G.

AU - Kress, J. M.

AU - Miller, W.

PY - 2010/2/26

Y1 - 2010/2/26

N2 - We describe a method for determining a complete set of integrals for a classical Hamiltonian that separates in orthogonal subgroup coordinates. As examples, we use it to determine complete sets of integrals, polynomial in the momenta, for some families of generalized oscillator and Kepler-Coulomb systems, hence demonstrating their superintegrability. The latter generalizes recent results of Verrier and Evans, and Rodríguez, Tempesta and Winternitz. Another example is given of a superintegrable system on a non-conformally flat space.

AB - We describe a method for determining a complete set of integrals for a classical Hamiltonian that separates in orthogonal subgroup coordinates. As examples, we use it to determine complete sets of integrals, polynomial in the momenta, for some families of generalized oscillator and Kepler-Coulomb systems, hence demonstrating their superintegrability. The latter generalizes recent results of Verrier and Evans, and Rodríguez, Tempesta and Winternitz. Another example is given of a superintegrable system on a non-conformally flat space.

UR - http://www.scopus.com/inward/record.url?scp=77149170022&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=77149170022&partnerID=8YFLogxK

U2 - 10.1088/1751-8113/43/9/092001

DO - 10.1088/1751-8113/43/9/092001

M3 - Article

AN - SCOPUS:77149170022

VL - 43

JO - Journal of Physics A: Mathematical and Theoretical

JF - Journal of Physics A: Mathematical and Theoretical

SN - 1751-8113

IS - 9

M1 - 092001

ER -