Abstract
The fabrication of high-performance microscale devices in substrates with optimal material properties while keeping costs low and maintaining the flexibility to rapidly prototype new designs remains an ongoing challenge in the microfluidics field. To this end, we have fabricated a micro free-flow electrophoresis (µFFE) device in cyclic olefin copolymer (COC) via hot embossing using a PolyJet 3D-printed master mold. A room-temperature cyclohexane vapor bath was used to clarify the device and facilitate solvent-assisted thermal bonding to fully enclose the channels. Device profiling showed 55 µm deep channels with no detectable feature degradation due to solvent exposure. Baseline separation of fluorescein, rhodamine 110, and rhodamine 123, was achieved at 150 V. Limits of detection for these fluorophores were 2 nM, 1 nM, and 10 nM, respectively, and were comparable to previously reported values for glass and 3D-printed devices. Using PolyJet 3D printing in conjunction with hot embossing, the full design cycle, from initial design to production of fully functional COC µFFE devices, could be completed in as little as 6 days without the need for specialized clean room facilities. Replicate COC µFFE devices could be produced from an existing embossing mold in as little as two hours.
Original language | English (US) |
---|---|
Article number | 1728 |
Journal | Micromachines |
Volume | 14 |
Issue number | 9 |
DOIs | |
State | Published - Sep 2023 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2023 by the authors.
Keywords
- 3D printing
- cyclic olefin copolymer
- hot embossing
- micro free-flow electrophoresis
- microfluidics
PubMed: MeSH publication types
- Journal Article