TY - JOUR
T1 - Extended-release antiepileptic drugs
T2 - A comparison of pharmacokinetic parameters relative to original immediate-release formulations
AU - Leppik, Ilo E.
AU - Hovinga, Collin A.
N1 - Copyright:
Copyright 2013 Elsevier B.V., All rights reserved.
PY - 2013/1
Y1 - 2013/1
N2 - Many antiepileptic drugs (AEDs) have short half-lives with large fluctuations in peak-to-trough plasma concentrations. Consequences of these pharmacokinetic (PK) properties may include adverse events (AEs) and breakthrough seizures, potentially leading to poor adherence. To address these challenges, newer formulations of these AEDs have been developed using unique extended-release (ER) technologies. These technologies extend the dosing interval such that dosing frequency can be minimized, which may improve patient adherence. Available ER formulations have the potential to minimize the spikes in maximum plasma concentrations (Cmax) at steady-state that often contribute to AEs during treatment with immediate-release (IR) products. In so doing, tolerability advantages may lead to increased AED effectiveness by improving adherence and allowing higher doses if clinically indicated. Direct PK comparison studies of IR and ER formulations (e.g., carbamazepine, divalproate sodium, lamotrigine, oxcarbazepine, levetiracetam, and phenytoin) have found that dose-normalized ER formulations may or may not be bioequivalent to their IR counterparts, but most ER formulations have a lower fluctuation index ([C max-Cmin]/Cavg) compared with the IR versions. This results in flatter concentration-time plots. Not all ER preparations improve the various PK parameters to the same extent, and PK nuances may impact the effectiveness, tolerability, and adherence rates of various ER formulations.
AB - Many antiepileptic drugs (AEDs) have short half-lives with large fluctuations in peak-to-trough plasma concentrations. Consequences of these pharmacokinetic (PK) properties may include adverse events (AEs) and breakthrough seizures, potentially leading to poor adherence. To address these challenges, newer formulations of these AEDs have been developed using unique extended-release (ER) technologies. These technologies extend the dosing interval such that dosing frequency can be minimized, which may improve patient adherence. Available ER formulations have the potential to minimize the spikes in maximum plasma concentrations (Cmax) at steady-state that often contribute to AEs during treatment with immediate-release (IR) products. In so doing, tolerability advantages may lead to increased AED effectiveness by improving adherence and allowing higher doses if clinically indicated. Direct PK comparison studies of IR and ER formulations (e.g., carbamazepine, divalproate sodium, lamotrigine, oxcarbazepine, levetiracetam, and phenytoin) have found that dose-normalized ER formulations may or may not be bioequivalent to their IR counterparts, but most ER formulations have a lower fluctuation index ([C max-Cmin]/Cavg) compared with the IR versions. This results in flatter concentration-time plots. Not all ER preparations improve the various PK parameters to the same extent, and PK nuances may impact the effectiveness, tolerability, and adherence rates of various ER formulations.
KW - Anticonvulsants
KW - Epilepsy
KW - Extended-release preparations
KW - Medication adherence
KW - Pharmacokinetics
UR - http://www.scopus.com/inward/record.url?scp=84872061537&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84872061537&partnerID=8YFLogxK
U2 - 10.1111/epi.12043
DO - 10.1111/epi.12043
M3 - Review article
C2 - 23190215
AN - SCOPUS:84872061537
SN - 0013-9580
VL - 54
SP - 28
EP - 35
JO - Epilepsia
JF - Epilepsia
IS - 1
ER -