TY - JOUR
T1 - Expression of coordinately regulated defence response genes and analysis of their role in disease resistance in Medicago truncatula
AU - Samac, Deborah A.
AU - Peñuela, Silvia
AU - Schnurr, Judy A.
AU - Hunt, E. Nicole
AU - Foster-Hartnett, Dawn
AU - Vandenbosch, Kathryn A.
AU - Gantt, J. Stephen
PY - 2011/10
Y1 - 2011/10
N2 - Microarray technology was used to identify the genes associated with disease defence responses in the model legume Medicago truncatula. Transcript profiles from M. truncatula cv. Jemalong genotype A17 leaves inoculated with Colletotrichum trifolii and Erysiphe pisi and roots infected with Phytophthora medicaginis were compared to identify the genes expressed in response to all three pathogens and genes unique to an interaction. The A17 genotype is resistant to C. trifolii and E. pisi, exhibiting a hypersensitive response after inoculation, and is moderately susceptible to P. medicaginis. Among the most strongly up-regulated genes in all three interactions were those encoding a hevein-like protein, thaumatin-like protein (TLP) and members of the pathogenesis response (PR)10 family. Transcripts of genes for enzymes in the phenylpropanoid pathway leading to the production of isoflavonoid phytoalexins increased dramatically in response to inoculation with the foliar pathogens. In P. medicaginis-inoculated roots, transcripts of genes in the phenylpropanoid pathway peaked at 5 days post-inoculation, when symptoms became visible. Transcript accumulation of three PR10 family members, a TLP and chalcone synthase (CHS) was assessed in M. truncatula genotype R108 plants. The R108 plants are resistant to C. trifolii and moderately susceptible to E. pisi and P. medicaginis. Transcript accumulation paralleled the stages of pathogen development. To evaluate the role of a TLP, a PR10 family member and CHS in disease resistance, transgenic R108 plants containing interfering RNA (RNAi) constructs were produced. Reduced expression of PR10 and TLP had no effect on the disease phenotype, whereas reduced expression of CHS resulted in increased susceptibility to necrotrophic pathogens.
AB - Microarray technology was used to identify the genes associated with disease defence responses in the model legume Medicago truncatula. Transcript profiles from M. truncatula cv. Jemalong genotype A17 leaves inoculated with Colletotrichum trifolii and Erysiphe pisi and roots infected with Phytophthora medicaginis were compared to identify the genes expressed in response to all three pathogens and genes unique to an interaction. The A17 genotype is resistant to C. trifolii and E. pisi, exhibiting a hypersensitive response after inoculation, and is moderately susceptible to P. medicaginis. Among the most strongly up-regulated genes in all three interactions were those encoding a hevein-like protein, thaumatin-like protein (TLP) and members of the pathogenesis response (PR)10 family. Transcripts of genes for enzymes in the phenylpropanoid pathway leading to the production of isoflavonoid phytoalexins increased dramatically in response to inoculation with the foliar pathogens. In P. medicaginis-inoculated roots, transcripts of genes in the phenylpropanoid pathway peaked at 5 days post-inoculation, when symptoms became visible. Transcript accumulation of three PR10 family members, a TLP and chalcone synthase (CHS) was assessed in M. truncatula genotype R108 plants. The R108 plants are resistant to C. trifolii and moderately susceptible to E. pisi and P. medicaginis. Transcript accumulation paralleled the stages of pathogen development. To evaluate the role of a TLP, a PR10 family member and CHS in disease resistance, transgenic R108 plants containing interfering RNA (RNAi) constructs were produced. Reduced expression of PR10 and TLP had no effect on the disease phenotype, whereas reduced expression of CHS resulted in increased susceptibility to necrotrophic pathogens.
UR - http://www.scopus.com/inward/record.url?scp=80052423117&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=80052423117&partnerID=8YFLogxK
U2 - 10.1111/j.1364-3703.2011.00712.x
DO - 10.1111/j.1364-3703.2011.00712.x
M3 - Article
C2 - 21726379
AN - SCOPUS:80052423117
SN - 1464-6722
VL - 12
SP - 786
EP - 798
JO - Molecular Plant Pathology
JF - Molecular Plant Pathology
IS - 8
ER -