TY - JOUR
T1 - Expression of a soluble transforming growth factor-β (TGFβ) receptor reduces tumorigenicity by regulating natural killer (NK) cell activity against 9L gliosarcoma in vivo
AU - Witham, Timothy F.
AU - Villa, Lorissa
AU - Yang, Tianbing
AU - Pollack, Ian F.
AU - Okada, Hideho
AU - Robbins, Paul D.
AU - Chambers, William H.
PY - 2003/8/1
Y1 - 2003/8/1
N2 - Immunotherapy of gliomas has been forwarded as an attractive alternative to standard therapeutic modalities. Numerous observations indicate some therapeutic efficacy with this approach, but it is not curative in most reports. It is well established that gliomas suppress immune reactivity via a number of mechanisms, including expression CD95 ligand (CD95L), which induces apoptosis of immune effector cells, and secretion of immunosuppressive factors such as transforming growth factor-beta (TGFβ). It has been hypothesized that abrogation of production or function of TGFβ would improve immune reactivity to gliomas. To investigate this in a fashion that is translatable into clinical practice, we utilized a retroviral vector encoding a truncated, soluble form of the Type II receptor for TGFβ (TFGβsr) and expressed it in the rat 9L gliosarcoma line (9L-TGFβsr). We then determined whether expression of TGFβsr affected in vitro sensitivity of 9L to lysis by immune effector cells, whether expression of TGFβsr affected tumorigenesis of 9L in vivo, and whether TGFβsr affected expression of immunity to 9L. In these experiments, we determined that 9L-TGFβsr was more susceptible than sham transfected 9L (9L-neo) to lysis by natural killer (NK) cells. We also determined that subcutaneously implanted 9L-TGFβsr was less tumorigenic than 9L-neo in syngeneic rats. Similarly, survival was extended by ∼40% in rats given intracranial 9L-TGFβsr compared to 9L-neo. Finally, we determined that elimination of CD161+ cells resulted in comparable growth of 9L-neo and 9L-TGFβsr in vivo, indicating that NK or NK-like cells were responsible for the anti-tumor effects in this model.
AB - Immunotherapy of gliomas has been forwarded as an attractive alternative to standard therapeutic modalities. Numerous observations indicate some therapeutic efficacy with this approach, but it is not curative in most reports. It is well established that gliomas suppress immune reactivity via a number of mechanisms, including expression CD95 ligand (CD95L), which induces apoptosis of immune effector cells, and secretion of immunosuppressive factors such as transforming growth factor-beta (TGFβ). It has been hypothesized that abrogation of production or function of TGFβ would improve immune reactivity to gliomas. To investigate this in a fashion that is translatable into clinical practice, we utilized a retroviral vector encoding a truncated, soluble form of the Type II receptor for TGFβ (TFGβsr) and expressed it in the rat 9L gliosarcoma line (9L-TGFβsr). We then determined whether expression of TGFβsr affected in vitro sensitivity of 9L to lysis by immune effector cells, whether expression of TGFβsr affected tumorigenesis of 9L in vivo, and whether TGFβsr affected expression of immunity to 9L. In these experiments, we determined that 9L-TGFβsr was more susceptible than sham transfected 9L (9L-neo) to lysis by natural killer (NK) cells. We also determined that subcutaneously implanted 9L-TGFβsr was less tumorigenic than 9L-neo in syngeneic rats. Similarly, survival was extended by ∼40% in rats given intracranial 9L-TGFβsr compared to 9L-neo. Finally, we determined that elimination of CD161+ cells resulted in comparable growth of 9L-neo and 9L-TGFβsr in vivo, indicating that NK or NK-like cells were responsible for the anti-tumor effects in this model.
KW - Gliomas
KW - Immunotherapy
KW - NK
KW - TGFβ
UR - http://www.scopus.com/inward/record.url?scp=0043065313&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0043065313&partnerID=8YFLogxK
U2 - 10.1023/A:1024938026553
DO - 10.1023/A:1024938026553
M3 - Article
C2 - 12952287
SN - 0167-594X
VL - 64
SP - 63
EP - 69
JO - Journal of neuro-oncology
JF - Journal of neuro-oncology
IS - 1-2
ER -