Exploring the high-energy gamma-ray spectra of TeV blazars

VERITAS collaboration

Research output: Contribution to journalConference articlepeer-review

Abstract

The highest-energy blazars exhibit non-thermal radiation extending beyond 1 TeV with high luminosities and strong variabilities, indicating extreme particle acceleration in their relativistic jets. The gamma-ray spectra of blazars contain information about the distribution and cooling processes of high-energy particles in jets, the extragalactic background light between the source and the observer, and potentially, the environment of the gamma-ray emitting region and exotic physics that may modify the opacity of the universe to gamma rays. We use data from Fermi-LAT and VERITAS to study the variability and spectra of a sample of TeV blazars across a wide range of gamma-ray energies, taking advantage of more than ten years of data from both instruments. The variability in both the GeV and TeV gamma-ray bands is investigated using a Bayesian blocks method to identify periods with a steady flux, during which the average gamma-ray spectra, after correcting for the pair absorption effect from propagation, can be parameterized without the risk of mixing different flux states. We report on the search for intrinsic spectral curvature and spectral variability in these blazars, in an effort to understand the physical mechanisms behind the high-energy gamma-ray spectra of TeV blazars.

Original languageEnglish (US)
Article number802
JournalProceedings of Science
Volume395
StatePublished - Mar 18 2022
Event37th International Cosmic Ray Conference, ICRC 2021 - Virtual, Berlin, Germany
Duration: Jul 12 2021Jul 23 2021

Bibliographical note

Funding Information:
This research is supported by grants from the U.S. Department of Energy Office of Science, the U.S. National Science Foundation and the Smithsonian Institution, by NSERC in Canada, and by the Helmholtz Association in Germany. This research used resources provided by the Open Science Grid, which is supported by the National Science Foundation and the U.S. Department of Energy’s Office of Science, and resources of the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility operated under Contract No. DE-AC02-05CH11231. We acknowledge the excellent work of the technical support staff at the Fred Lawrence Whipple Observatory and at the collaborating institutions in the construction and operation of the instrument.

Publisher Copyright:
© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).

Fingerprint

Dive into the research topics of 'Exploring the high-energy gamma-ray spectra of TeV blazars'. Together they form a unique fingerprint.

Cite this