TY - JOUR
T1 - Exploring opportunities for tuning phenyltris(pyrazol-1-yl)borate donation by varying the extent of phenyl substituent fluorination
AU - Fischer, Paul J.
AU - Roe, Charley B.
AU - Stephenson, Jasmine N.
AU - Dunscomb, Rachel
AU - Carthy, Camille L.
AU - Nataro, Chip
AU - Young, Victor G.
N1 - Publisher Copyright:
© 2023 The Royal Society of Chemistry.
PY - 2023/4/4
Y1 - 2023/4/4
N2 - The importance of electron deficient Tp ligands motivates the introduction of electron-withdrawing substituents into the scorpionate framework. Since perfluorophenyltris(pyrazol-1-yl)borate affects significant anodic shifts in half-cell potentials in their metal complexes relative those of phenyltris(pyrazol-1-yl)borate analogues, the tuning opportunities achieved using 3,4,5-trifluorophenyl- and 3,5-bis(trifluoromethyl)phenyl(pyrazol-1-yl)borates were explored. Bis(amino)boranes ((3,4,5-F)C6H2)B(NMe2)2 and ((3,5-CF3)C6H3)B(NMe2)2 are precursors to fluorinated tris(pyrazol-1-yl)phenylborates. Thallium salts of these scorpionates exhibit bridging asymmetric κ3-N,N,N coordination modes consistent with the reduced π-basicity of the fluorinated phenyl substituents relative those of other structurally characterized tris(pyrazol-1-yl)phenylborates. While a comparative analysis of the spectral and X-ray crystallographic data for classical Mo(0), Mo(ii), Mn(i), Fe(ii) and Cu(ii) complexes of [((3,4,5-F)C6H2)Bpz3]− and [((3,5-CF3)C6H3)Bpz3]− could not differentiate these ligands with respect to their metal-based electronic impacts, cyclic voltammetry suggests that 3,4,5-trifluorophenyl- and 3,5-bis(trifluoromethyl)phenyl(pyrazol-1-yl)borates affect similar anodic shifts within their metal complexes, with coordination of [((3,5-CF3)C6H3)Bpz3]− rendering metal centers more difficult to oxidize, and sometimes even more difficult to oxidize than their [C6F5Bpz3]− analogues. These data suggest that the extent of phenyl substituent fluorination necessary to minimize metal center electron-richness in phenyltris(pyrazol-1-yl)borate complexes cannot be confidently predicted.
AB - The importance of electron deficient Tp ligands motivates the introduction of electron-withdrawing substituents into the scorpionate framework. Since perfluorophenyltris(pyrazol-1-yl)borate affects significant anodic shifts in half-cell potentials in their metal complexes relative those of phenyltris(pyrazol-1-yl)borate analogues, the tuning opportunities achieved using 3,4,5-trifluorophenyl- and 3,5-bis(trifluoromethyl)phenyl(pyrazol-1-yl)borates were explored. Bis(amino)boranes ((3,4,5-F)C6H2)B(NMe2)2 and ((3,5-CF3)C6H3)B(NMe2)2 are precursors to fluorinated tris(pyrazol-1-yl)phenylborates. Thallium salts of these scorpionates exhibit bridging asymmetric κ3-N,N,N coordination modes consistent with the reduced π-basicity of the fluorinated phenyl substituents relative those of other structurally characterized tris(pyrazol-1-yl)phenylborates. While a comparative analysis of the spectral and X-ray crystallographic data for classical Mo(0), Mo(ii), Mn(i), Fe(ii) and Cu(ii) complexes of [((3,4,5-F)C6H2)Bpz3]− and [((3,5-CF3)C6H3)Bpz3]− could not differentiate these ligands with respect to their metal-based electronic impacts, cyclic voltammetry suggests that 3,4,5-trifluorophenyl- and 3,5-bis(trifluoromethyl)phenyl(pyrazol-1-yl)borates affect similar anodic shifts within their metal complexes, with coordination of [((3,5-CF3)C6H3)Bpz3]− rendering metal centers more difficult to oxidize, and sometimes even more difficult to oxidize than their [C6F5Bpz3]− analogues. These data suggest that the extent of phenyl substituent fluorination necessary to minimize metal center electron-richness in phenyltris(pyrazol-1-yl)borate complexes cannot be confidently predicted.
UR - http://www.scopus.com/inward/record.url?scp=85152106792&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85152106792&partnerID=8YFLogxK
U2 - 10.1039/d3dt00735a
DO - 10.1039/d3dt00735a
M3 - Article
C2 - 37013996
AN - SCOPUS:85152106792
SN - 1477-9226
VL - 52
SP - 5606
EP - 5615
JO - Dalton Transactions
JF - Dalton Transactions
IS - 17
ER -