Exploiting syntactic relationships in a phrase-based decoder: An exploration

Tim Hunter, Philip Resnik

Research output: Contribution to journalArticlepeer-review

5 Scopus citations


Phrase-based decoding is conceptually simple and straightforward to implement, at the cost of drastically oversimplified reordering models. Syntactically aware models make it possible to capturelinguistically relevant relationships in order to improve word order, but they can be more complex to implement and optimise. In this paper, we explore a new middle ground between phrase-based andsyntactically informed statistical MT, in the form of a model that supplements conventional, non-hierarchical phrase-based techniques with linguistically informed reordering based on syntactic dependencytrees. The key idea is to exploit linguistically-informed hierchical structures only for those dependencies that cannot be captured within a single flat phrase. For very local dependencies we leverage the successof conventional phrase-based approaches, which provide a sequence of target-language words appropriately ordered and ready-made with any agreement morphology. Working with dependency trees rather than constituency trees allows us to take advantage of the flexibility of phrase-based systems to treat non-constituent fragments as phrases. We do impose a requirement-that the fragment be a novel sort of"dependency constituent"-on what can be translated as a phrase, but this is much weaker than the requirement that phrases be traditional linguistic constituents, which has often proven toorestrictive in MT systems.

Original languageEnglish (US)
Pages (from-to)123-140
Number of pages18
JournalMachine Translation
Issue number2
StatePublished - Jun 1 2010


  • Phrase-based translation
  • Reordering
  • Statistical MT
  • Syntax

Fingerprint Dive into the research topics of 'Exploiting syntactic relationships in a phrase-based decoder: An exploration'. Together they form a unique fingerprint.

Cite this