TY - JOUR
T1 - Explanation of the unusual temperature dependence of the atmospherically important OH + H2S → H2O + HS reaction and prediction of the rate constant at combustion temperatures
AU - Ellingson, Benjamin A.
AU - Truhlar, Donald G
PY - 2007/10/24
Y1 - 2007/10/24
N2 - Rate constants for the OH + H2S → H2O + HS reaction, which is important for both atmospheric chemistry and combustion, are calculated by direct dynamics with the M06-2X density functional using the MG3S basis set. Energetics are compared to high-level MCG3/3//MC-QCISD/3 wave function theory and to results obtained by other density functionals. We employ canonical variational transition-state theory with multidimensional tunneling contributions and scaled generalized normal-mode frequencies evaluated in redundant curvilinear coordinates with anharmonicity included in the torsion. The transition state has a quantum mechanically distinguishable, nonsuperimposable mirror image that corresponds to a separate classical reaction path; the effect of the multiple paths is examined through use of a symmetry number and by torsional methods. Calculations with the reference-potential Pitzer-Gwinn treatment of the torsional mode agree with experiment, within experimental scatter, and predict a striking temperature dependence of the activation energy, increasing from -0.1 kcal/mol at 200 K to 0.2, 1.0, 3.4, and 9.8 kcal/mol at 300, 500, 1000, and 2400 K. The unusual temperature dependence arises from a dynamical bottleneck at an energy below reactants, following an addition complex on the reaction path with a classical binding energy of 4.4 kcal/mol. As a way to check the mechanism, kinetic isotope effects of the OH + D2S and OD + D2S reactions have been predicted.
AB - Rate constants for the OH + H2S → H2O + HS reaction, which is important for both atmospheric chemistry and combustion, are calculated by direct dynamics with the M06-2X density functional using the MG3S basis set. Energetics are compared to high-level MCG3/3//MC-QCISD/3 wave function theory and to results obtained by other density functionals. We employ canonical variational transition-state theory with multidimensional tunneling contributions and scaled generalized normal-mode frequencies evaluated in redundant curvilinear coordinates with anharmonicity included in the torsion. The transition state has a quantum mechanically distinguishable, nonsuperimposable mirror image that corresponds to a separate classical reaction path; the effect of the multiple paths is examined through use of a symmetry number and by torsional methods. Calculations with the reference-potential Pitzer-Gwinn treatment of the torsional mode agree with experiment, within experimental scatter, and predict a striking temperature dependence of the activation energy, increasing from -0.1 kcal/mol at 200 K to 0.2, 1.0, 3.4, and 9.8 kcal/mol at 300, 500, 1000, and 2400 K. The unusual temperature dependence arises from a dynamical bottleneck at an energy below reactants, following an addition complex on the reaction path with a classical binding energy of 4.4 kcal/mol. As a way to check the mechanism, kinetic isotope effects of the OH + D2S and OD + D2S reactions have been predicted.
UR - http://www.scopus.com/inward/record.url?scp=35548942738&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=35548942738&partnerID=8YFLogxK
U2 - 10.1021/ja072538b
DO - 10.1021/ja072538b
M3 - Article
C2 - 17910447
AN - SCOPUS:35548942738
SN - 0002-7863
VL - 129
SP - 12765
EP - 12771
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 42
ER -