Experimentally validated models for switching energy of low pressure drop digital valves for lightweight portable hydraulic robots

Saeed Hashemi, Hannah Mitchell, William K. Durfee

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

The most critical factors for a switching valve in a lightweight, portable hydraulic systems are low pressure drop, low power consumption, fast response time, and small size and weight. In this paper, experimentally validated models are proposed for switching energy required by two valve architectures with minimum pressure drop (ball and butterfly valves). The orifice in a hydraulic valve creates a pressure drop across the valve that needs to be minimized especially for low-pressure passive applications. The ideal switching valve for a hydraulic device is one with an opening diameter that is the same as the hose diameter. Several valve architectures with low pressure drop can be motorized to be used as a digital valve. The valve operation mechanism determines the power consumption of the valve. In this paper, the energy to switch state was modeled for two rotary valve types: butterfly and ball. The model was being used to find the best valve configuration for low-pressure digital hydraulics. The model was validated through experiments on a low-pressure ball valve, a high-pressure ball valve, and a low-pressure butterfly valve. The butterfly valve has the lowest switching energy for the same geometry; however, this valve has a small pressure drop due to the presence of the disc in the open position. We conclude that either ball or butterfly valves are suitable for low-pressure, small-scale hydraulic applications.

Original languageEnglish (US)
Title of host publicationASME/BATH 2019 Symposium on Fluid Power and Motion Control, FPMC 2019
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791859339
DOIs
StatePublished - 2020
EventASME/BATH 2019 Symposium on Fluid Power and Motion Control, FPMC 2019 - Longboat Key, United States
Duration: Oct 7 2019Oct 9 2019

Publication series

NameASME/BATH 2019 Symposium on Fluid Power and Motion Control, FPMC 2019

Conference

ConferenceASME/BATH 2019 Symposium on Fluid Power and Motion Control, FPMC 2019
CountryUnited States
CityLongboat Key
Period10/7/1910/9/19

Bibliographical note

Funding Information:
Funding provided by the National Institute of Health (NIH), grant number 5-R01EB019834-03.

Keywords

  • Ball valve
  • Butterfly valve
  • Digital valve
  • Hydraulic transmission
  • Low-pressure hydraulics
  • Small-scale hydraulics

Fingerprint Dive into the research topics of 'Experimentally validated models for switching energy of low pressure drop digital valves for lightweight portable hydraulic robots'. Together they form a unique fingerprint.

Cite this