Abstract
The wake behaviors and dynamics associated with bio-inspired propulsion are examined through an investigation of the wake structures produced by five different pitching panels with various trailing edge shapes. The behaviors of the wake structures produced by the panels are captured through the use of stereoscopic particle image velocimetry. The plan-form shapes of the bio-inspired pitching panels are based upon a trapezoidal design, but with the introduction of either a forked, straight, or pointed trailing edge geometry. Each of the five panels are sinusoidally pitched about their leading edge at five different pitching amplitudes, resulting in 25 unique wake scenarios. Results presented in the current work demonstrate that panel geometry and pitching amplitude have significant effects on wake behavior and dynamics. The shape of the trailing edge tends to affect the shape of spanwise vortices as they are shed from the trailing edge. Forked panels tend to shed spanwise vortices that are inflected inwards, although this behavior disappears at larger pitching amplitudes, while pointed panels shed vortices that are inflected outwards at all pitching amplitudes. Increases in pitching amplitude, i.e. Strouhal number, result in greater generation of spanwise and streamwise vorticity, further expansion of the wake in the transverse direction, more pronounced spanwise compression of the wake, and the movement of the wake breakdown location upstream. Additionally, for certain panel geometries at large enough pitching amplitudes, multiple spanwise vortices are observed to be a result of a Kelvin-Helmholtz-like instability. The panels were pitched across a Strouhal number range between 0.09 and 0.66, overlapping with, and extending beyond the range of Strouhal numbers that are employed by various swimming fish and cetaceans.
Original language | English (US) |
---|---|
Title of host publication | AIAA Scitech 2019 Forum |
Publisher | American Institute of Aeronautics and Astronautics Inc, AIAA |
ISBN (Print) | 9781624105784 |
DOIs | |
State | Published - 2019 |
Event | AIAA Scitech Forum, 2019 - San Diego, United States Duration: Jan 7 2019 → Jan 11 2019 |
Publication series
Name | AIAA Scitech 2019 Forum |
---|
Conference
Conference | AIAA Scitech Forum, 2019 |
---|---|
Country/Territory | United States |
City | San Diego |
Period | 1/7/19 → 1/11/19 |
Bibliographical note
Funding Information:This work was supported by the Office of Naval Research under ONR Award No. N00014-17-1-2759. The authors also wish to thank the Syracuse Center of Excellence for Environmental and Energy Systems for providing funds used towards the purchase of lasers and related equipment.
Publisher Copyright:
© 2019 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.