Experimental study of nanoparticles penetration through commercial filter media

Seong Chan Kim, Matthew S. Harrington, David Y.H. Pui

Research output: Contribution to journalArticlepeer-review

152 Scopus citations


In this study, nanoparticle penetration was measured with a wide range of filter media using silver nanoparticles from 3 nm to 20 nm at three different face velocities in order to define nanoparticle filtration characteristics of commercial fibrous filter media. The silver particles were generated by heating a pure silver powder source via an electric furnace with a temperature of 870°C, which was found to be the optimal temperature for generating an adequate amount of silver nanoparticles for the size range specified above. After size classification using a nano-DMA, the particle counts were measured by an Ultrafine Condensation Particle Counter (UCPC) both upstream and downstream of the test filter to determine the nanoparticle penetration for each specific particle size. Particle sampling time continued long enough to detect more than 105 counts at the upstream and 10 counts at the downstream sampling point so that 99.99% efficiency can be detected with the high efficiency filter. The results show a very high uniformity with small error bars for all filter media tested in this study. The particle penetration decreases continuously down to 3 nm as expected from the classical filtration theory, and together with a companion modeling paper by Wang et al. in this same issue, we found no significant evidence of nanoparticle thermal rebound down to 3 nm.

Original languageEnglish (US)
Pages (from-to)117-125
Number of pages9
JournalJournal of Nanoparticle Research
Issue number1
StatePublished - Jan 2007

Bibliographical note

Funding Information:
The authors thank the support of members of the Center for Filtration Research (CFR): 3M, Donaldson, Fleetguard, Samsung Digital Appliance, Samsung Semiconductor, TSI, and W. L. Gore & Associates.


  • Diffusion
  • Filtration
  • Nanoparticles
  • Occupational health
  • Penetration
  • Thermal rebound


Dive into the research topics of 'Experimental study of nanoparticles penetration through commercial filter media'. Together they form a unique fingerprint.

Cite this