Experimental study of heat transfer enhancement in a liquid piston compressor/expander using porous media inserts

Bo Yan, Jacob Wieberdink, Farzad Shirazi, Perry Y. Li, Terrence W. Simon, James D. Van de Ven

Research output: Contribution to journalArticlepeer-review

93 Scopus citations


The efficiency and power density of gas compression and expansion are strongly dependent on heat transfer during the process. Since porous media inserts can significantly increase heat transfer surface area, their addition to a liquid piston compressor/expander has been hypothesized to reduce the time to complete the compression or expansion process and hence the power density for a given thermodynamic efficiency; or to increase the thermodynamic efficiency at a fixed power density. This paper presents an experimental investigation on heat transfer with porous inserts during compression for a pressure ratio of 10 and during expansion for a pressure ratio of 6. A baseline case without inserts and five cases with different porous inserts are tested in a compression experiment: 3 interrupted ABS inserts with plate spacing of 2.5, 5, and 10mm and 2 aluminum foam inserts sized with 10 and 40 pores per inch. The 2.5mm and 5mm interrupted plate inserts were also tested in expansion experiments. Porous inserts are found, in compression, to increase power-density by 39-fold at 95% efficiency and to increase efficiency by 18% at 100kW/m3 power density; in expansion, power density is increased three fold at 89% efficiency, and efficiency is increased by 7% at 150kW/m3. Surface area increase is found to be the predominant cause in the improvement in performance. Thus, a liquid piston compressor/expander together with a porous medium may be used in applications requiring high compression ratios, high efficiencies, and high power density such as in an open-accumulator compressed air energy storage (CAES) system or a compressor for compressed natural gas (CNG).

Original languageEnglish (US)
Pages (from-to)40-50
Number of pages11
JournalApplied Energy
StatePublished - Sep 5 2015

Bibliographical note

Publisher Copyright:
© 2015 Elsevier Ltd.


  • Compressed air energy storage (CAES)
  • Efficiency
  • Gas compression/expansion
  • Liquid piston
  • Porous media
  • Power density


Dive into the research topics of 'Experimental study of heat transfer enhancement in a liquid piston compressor/expander using porous media inserts'. Together they form a unique fingerprint.

Cite this