Experimental evaluation of a solar cyclone reactor via particle image velocimetry

Nesrin Ozalp, Min Hsiu Chien, Gerald Morrison

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Scopus citations

Abstract

Solar thermal cracking of methane produces two valuable products; hydrogen gas and solid carbon, both of which can be used as a fuel and as a commodity. During the course of this two-phase phenomenon, carbon particles tend to deposit on solar reactor window, wall, and exit. Especially when they accumulate at the reactor exit, agglomeration of these particles completely blocks the exit. Therefore, this problem has been the major issue preventing solar cracking reactors from running continuously. To address this problem, a cyclone solar reactor was designed to enhance the residence time and make carbon particles fly in circles in the reactor instead of moving towards the exit all together at a time. In order to better understand and explain the flow dynamics inside the solar cyclone reactor, a prototype reactor was manufactured to test the concept and to analyze the flow via Particle Imagining Velocimetry (PIV). In this paper, design steps of this new solar reactor concept are given and a brief summary of the CFD simulations incorporating discrete ordinate radiation model (DO), species transport with volumetric reactions, and discrete phase model (DPM) for particles are presented. Then experiments focusing on the PIV analysis are described. To understand the flow evolution along the vortex line, several images in axial direction along the vortex line were captured. The results showed that when the main flow is increased by 25%, the vertical velocity components became larger. It was also observed that the vertical vortices along the vortex line showed stronger interaction with outward fluid in the core region, which implied the horizontal twisting motion dominated the region due to the main flow, which could trapped the particles in the reactor for longer time. Furthermore, when the main flow was increased by 50%, the flow was a cyclone-dominated structure. During the vertical evolution along the vortex line, more vortices emerged between the wall region and core region, implying the energy was transfer from order to disorder. In summary, by appropriate selection of parameters, the concept of aero-shielded solar cyclone reactor can be an attractive option to overcome the problem of carbon particle deposition at the reactor walls and exit.

Original languageEnglish (US)
Title of host publicationASME 2012 Heat Transfer Summer Conf. Collocated with the ASME 2012 Fluids Engineering Div. Summer Meeting and the ASME 2012 10th Int. Conf. on Nanochannels, Microchannels and Minichannels, HT 2012
Pages97-110
Number of pages14
DOIs
StatePublished - 2012
EventASME 2012 Heat Transfer Summer Conference Collocated with the ASME 2012 Fluids Engineering Div. Summer Meeting and the ASME 2012 10th Int. Conf. on Nanochannels, Microchannels and Minichannels, HT 2012 - Rio Grande, Puerto Rico
Duration: Jul 8 2012Jul 12 2012

Publication series

NameASME 2012 Heat Transfer Summer Conf. Collocated with the ASME 2012 Fluids Engineering Div. Summer Meeting and the ASME 2012 10th Int. Conf. on Nanochannels, Microchannels and Minichannels, HT 2012
Volume1

Other

OtherASME 2012 Heat Transfer Summer Conference Collocated with the ASME 2012 Fluids Engineering Div. Summer Meeting and the ASME 2012 10th Int. Conf. on Nanochannels, Microchannels and Minichannels, HT 2012
Country/TerritoryPuerto Rico
CityRio Grande
Period7/8/127/12/12

Keywords

  • Carbon clogging
  • Flow dynamics
  • Particle image velocimetry
  • Solar reactor

Fingerprint

Dive into the research topics of 'Experimental evaluation of a solar cyclone reactor via particle image velocimetry'. Together they form a unique fingerprint.

Cite this