Experimental and numerical investigations of hypervelocity carbon dioxide flow over blunt bodies

M. Sharma, A. B. Swantek, W. Flaherty, J. M. Austin, S. Doraiswamy, Graham V Candler

Research output: Contribution to journalArticlepeer-review

16 Scopus citations

Abstract

This paper represents ongoing efforts to study high-enthalpy carbon dioxide flows inanticipation of the upcoming Mars Science Laboratory and future missions. The work is motivated by observed anomalies between experimental and numerical studies in hypervelocity impulse facilities. In this study, experiments are conducted in the hypervelocity expansion tube that, byvirtue of its flow acceleration process, exhibits minimal freestream dissociation in comparison with reflected shock tunnels, simplifying comparison with simulations. Shock shapes of the laboratory aeroshellatanglesofattackof0, 11, and16deg and spherical geometries areinvery good agreement with simulations incorporating detailed thermochemical modeling. Laboratory shock shapes at a 0 deg of attack are also in good agreement with data from the LENS X expansion tunnel facility, confirming results are facility-independent for the same type of flow acceleration. The shock standoff distance is sensitive to the thermochemical state and is used as an experimental measurable for comparison with simulations and two different theoretical models. For low-density small-scale experiments, itisseen that models based upon assumptions oflarge binary scaling valuesdonot match the experimental and numerical results. Inan efforttoaddress surface chemistry issues arising inhigh-enthalpy groundtest experiments, spherical stagnation point and aeroshell heat transfer distributions are also compared with the simulation. Heat transfer distributions over the aeroshell at the three angles of attack are in reasonable agreement with simulations, and the data fall within the noncatalytic and supercatalytic solutions.

Original languageEnglish (US)
Pages (from-to)673-683
Number of pages11
JournalJournal of thermophysics and heat transfer
Volume24
Issue number4
DOIs
StatePublished - 2010

Fingerprint Dive into the research topics of 'Experimental and numerical investigations of hypervelocity carbon dioxide flow over blunt bodies'. Together they form a unique fingerprint.

Cite this