Experimental analysis of viscoelastic behavior in nanoindentation

A. Strojny, W. W. Gerberich

Research output: Contribution to journalConference articlepeer-review

21 Scopus citations


Conventional analysis of load displacement curves in nanoindentation experiments determine modulus by using the elastic portion of the unloading slope or power law fitting the unloading slope. For polymeric materials, however, this analysis is not adequate because they behave viscoelastically. In companion research, L. Cheng has developed analytical models for flat tip and spherical tip indentation using a three element Kelvin-Voigt model, with a spring in series with a parallel dashpot and a spring for compressible and incompressible materials. Incompressible (v = 0.5) polydimethylsiloxane coatings with thicknesses of 2 and 78 microns, a compressible (v = 0.33) bulk polystyrene (PS) and a 16 μm styrene-acrylate block copolymer coating (v = 0.33) have been used to verify the models. The polymers were indented using flat tip and spherical tip indenters with a nanoindentation apparatus in creep (constant load) and relaxation modes (constant depth). The data was fit to the analytical models using a non-linear least squares fit algorithm varying three parameters. In general the fitted elastic and shear moduli compared favorably with conventional rheological and mechanical measurements on the same bulk polymers. However, it appears that the agreement for the thin film analysis can be improved by taking the hydrostatic pressure dependence of the modulus and substrate effects into consideration.

Original languageEnglish (US)
Pages (from-to)159-164
Number of pages6
JournalMaterials Research Society Symposium - Proceedings
StatePublished - Dec 1 1998
EventProceedings of the 1998 MRS Spring Symposium - San Francisco, CA, USA
Duration: Apr 13 1998Apr 15 1998


Dive into the research topics of 'Experimental analysis of viscoelastic behavior in nanoindentation'. Together they form a unique fingerprint.

Cite this