TY - JOUR
T1 - Exercise effect on oxidative stress is independent of change in estrogen metabolism
AU - Schmitz, Kathryn H.
AU - Warren, Meghan
AU - Rundle, Andrew G.
AU - Williams, Nancy I.
AU - Gross, Myron D.
AU - Kurzer, Mindy S.
PY - 2008/1/1
Y1 - 2008/1/1
N2 - Purpose: The effect of exercise training on lipid peroxidation and endogenous estrogens is not well understood in premenopausal women. Exercise effects on these variables could mediate observed associations of exercise with hormonally related cancers, including breast cancer. The purpose of the study is to determine the effect of 15 weeks of aerobic exercise on lipid peroxidation, endogenous estrogens, and body composition in young, healthy eumenorrheic women. Methods: Fifteen sedentary premenopausal women (18-25 years) participated. Pre- and post-exercise training urine collection (three 24-h samples) started 48 h after most recent exercise session for analysis of a marker of lipid peroxidation (F2-isoprostane) and endogenous estrogens, including 2-hydroxyestrogens, 4-hydroxyestrogens, 16-α-hydroxyestrone, and ratios of these metabolites (2:16, 2:4). Body composition was measured by dual-energy X-ray absorptiometry, and F2-isoprostanes and estrogens were measured by gas chromatography-mass spectrometry. Results: Aerobic exercise resulted in a 34% decrease in F2-isoprostane (P = 0.02), a 10% increase in fitness (P = 0.004), a 1.2 kg decrease in body mass (P = 0.007), and a 1.8 kg decrease in fat mass (P = 0.04). No significant changes were noted in estrogens. Conclusions: The effect of exercise training on oxidative stress may be relevant to risk for hormonally related cancers.
AB - Purpose: The effect of exercise training on lipid peroxidation and endogenous estrogens is not well understood in premenopausal women. Exercise effects on these variables could mediate observed associations of exercise with hormonally related cancers, including breast cancer. The purpose of the study is to determine the effect of 15 weeks of aerobic exercise on lipid peroxidation, endogenous estrogens, and body composition in young, healthy eumenorrheic women. Methods: Fifteen sedentary premenopausal women (18-25 years) participated. Pre- and post-exercise training urine collection (three 24-h samples) started 48 h after most recent exercise session for analysis of a marker of lipid peroxidation (F2-isoprostane) and endogenous estrogens, including 2-hydroxyestrogens, 4-hydroxyestrogens, 16-α-hydroxyestrone, and ratios of these metabolites (2:16, 2:4). Body composition was measured by dual-energy X-ray absorptiometry, and F2-isoprostanes and estrogens were measured by gas chromatography-mass spectrometry. Results: Aerobic exercise resulted in a 34% decrease in F2-isoprostane (P = 0.02), a 10% increase in fitness (P = 0.004), a 1.2 kg decrease in body mass (P = 0.007), and a 1.8 kg decrease in fat mass (P = 0.04). No significant changes were noted in estrogens. Conclusions: The effect of exercise training on oxidative stress may be relevant to risk for hormonally related cancers.
UR - http://www.scopus.com/inward/record.url?scp=38849201658&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=38849201658&partnerID=8YFLogxK
U2 - 10.1158/1055-9965.EPI-07-0058
DO - 10.1158/1055-9965.EPI-07-0058
M3 - Article
C2 - 18199727
AN - SCOPUS:38849201658
SN - 1055-9965
VL - 17
SP - 220
EP - 223
JO - Cancer Epidemiology Biomarkers and Prevention
JF - Cancer Epidemiology Biomarkers and Prevention
IS - 1
ER -