TY - JOUR

T1 - Examples of complete solvability of 2D classical superintegrable systems

AU - Chen, Yuxuan

AU - Kalnins, Ernie G.

AU - Li, Qiushi

AU - Miller, Willard

N1 - Publisher Copyright:
© 2015, Institute of Mathematics. All rights reserved.
Copyright:
Copyright 2018 Elsevier B.V., All rights reserved.

PY - 2015/11/3

Y1 - 2015/11/3

N2 - Classical (maximal) superintegrable systems in n dimensions are Hamiltonian systems with 2n - 1 independent constants of the motion, globally defined, the maximum number possible. They are very special because they can be solved algebraically. In this paper we show explicitly, mostly through examples of 2nd order superintegrable systems in 2 dimensions, how the trajectories can be determined in detail using rather elementary algebraic, geometric and analytic methods applied to the closed quadratic algebra of symmetries of the system, without resorting to separation of variables techniques or trying to integrate Hamilton’s equations. We treat a family of 2nd order degenerate systems: oscillator analogies on Darboux, nonzero constant curvature, and flat spaces, related to one another via contractions, and obeying Kepler’s laws. Then we treat two 2nd order nondegenerate systems, an analogy of a caged Coulomb problem on the 2-sphere and its contraction to a Euclidean space caged Coulomb problem. In all cases the symmetry algebra structure provides detailed information about the trajectories, some of which are rather complicated. An interesting example is the occurrence of “metronome orbits”, trajectories confined to an arc rather than a loop, which are indicated clearly from the structure equations but might be overlooked using more traditional methods. We also treat the Post-Winternitz system, an example of a classical 4th order superintegrable system that cannot be solved using separation of variables. Finally we treat a superintegrable system, related to the addition theorem for elliptic functions, whose constants of the motion are only rational in the momenta. It is a system of special interest because its constants of the motion generate a closed polynomial algebra. This paper contains many new results but we have tried to present most of the materials in a fashion that is easily accessible to nonexperts, in order to provide entrée to superintegrablity theory.

AB - Classical (maximal) superintegrable systems in n dimensions are Hamiltonian systems with 2n - 1 independent constants of the motion, globally defined, the maximum number possible. They are very special because they can be solved algebraically. In this paper we show explicitly, mostly through examples of 2nd order superintegrable systems in 2 dimensions, how the trajectories can be determined in detail using rather elementary algebraic, geometric and analytic methods applied to the closed quadratic algebra of symmetries of the system, without resorting to separation of variables techniques or trying to integrate Hamilton’s equations. We treat a family of 2nd order degenerate systems: oscillator analogies on Darboux, nonzero constant curvature, and flat spaces, related to one another via contractions, and obeying Kepler’s laws. Then we treat two 2nd order nondegenerate systems, an analogy of a caged Coulomb problem on the 2-sphere and its contraction to a Euclidean space caged Coulomb problem. In all cases the symmetry algebra structure provides detailed information about the trajectories, some of which are rather complicated. An interesting example is the occurrence of “metronome orbits”, trajectories confined to an arc rather than a loop, which are indicated clearly from the structure equations but might be overlooked using more traditional methods. We also treat the Post-Winternitz system, an example of a classical 4th order superintegrable system that cannot be solved using separation of variables. Finally we treat a superintegrable system, related to the addition theorem for elliptic functions, whose constants of the motion are only rational in the momenta. It is a system of special interest because its constants of the motion generate a closed polynomial algebra. This paper contains many new results but we have tried to present most of the materials in a fashion that is easily accessible to nonexperts, in order to provide entrée to superintegrablity theory.

KW - Classical trajectories

KW - Superintegrable systems

UR - http://www.scopus.com/inward/record.url?scp=84946552080&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84946552080&partnerID=8YFLogxK

U2 - 10.3842/SIGMA.2015.088

DO - 10.3842/SIGMA.2015.088

M3 - Article

AN - SCOPUS:84946552080

VL - 11

JO - Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

JF - Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SN - 1815-0659

M1 - 088

ER -