TY - JOUR

T1 - Examination of How Well Long-Range-Corrected Density Functionals Satisfy the Ionization Energy Theorem

AU - Kanchanakungwankul, Siriluk

AU - Truhlar, Donald G.

N1 - Publisher Copyright:
© 2021 American Chemical Society.

PY - 2021/8/10

Y1 - 2021/8/10

N2 - We calculated the vertical ionization energies (VIE) of 99 species in two ways to examine the accuracy of several long-range-corrected (LC) hybrid meta functionals in comparison with a gradient approximation (GA), global hybrids, and doubly hybrids. In the category of LC functionals, we examined both those with meta ingredients (i.e., that depend on the kinetic energy density) and those without them. The LC-hybrid meta functionals examined are M11, revM11, M11plus, and ωB97M-V. The reference data used to assess accuracy consist of 95 molecules and 4 atoms in the GW100 set. The two methods studied are the ΔSCF method (involving the difference of neutral and cation self-consistent field (SCF) energies) and the ionization energy theorem (involving the orbital energy of the highest occupied molecular orbital, HOMO). We calculated linear correlation coefficients (
r
2) and mean absolute deviations (MADs) between each approach and the reference VIE value from the CCSD(T)/def2-TZVPP level of theory. We compared the new LC-hybrid meta calculations to calculations with the 10 functionals in a previous VIE study by Brémond et al. and to the calculations with LC-BLYP (LC-Becke, Lee-Yang-Parr), CAM-B3LYP (Coulomb-attenuating-method Becke-3-parameter Lee-Yang-Parr), LC-ωHPBE, and ωB97X-D. The results show that Minnesota LC-hybrid meta functionals have the smallest mean absolute deviation of ionization energy theorem VIEs with the reference data; the LC-ωHPBE functional also does quite well in this test. This is very encouraging and indicates that LC-hybrid meta functionals would be the best starting points for the tuning strategy that has been shown to be a very good procedure for improving time-dependent density functional calculations, and it also helps explain the good success of LC-hybrid meta functionals for molecular excitation energies.

AB - We calculated the vertical ionization energies (VIE) of 99 species in two ways to examine the accuracy of several long-range-corrected (LC) hybrid meta functionals in comparison with a gradient approximation (GA), global hybrids, and doubly hybrids. In the category of LC functionals, we examined both those with meta ingredients (i.e., that depend on the kinetic energy density) and those without them. The LC-hybrid meta functionals examined are M11, revM11, M11plus, and ωB97M-V. The reference data used to assess accuracy consist of 95 molecules and 4 atoms in the GW100 set. The two methods studied are the ΔSCF method (involving the difference of neutral and cation self-consistent field (SCF) energies) and the ionization energy theorem (involving the orbital energy of the highest occupied molecular orbital, HOMO). We calculated linear correlation coefficients (
r
2) and mean absolute deviations (MADs) between each approach and the reference VIE value from the CCSD(T)/def2-TZVPP level of theory. We compared the new LC-hybrid meta calculations to calculations with the 10 functionals in a previous VIE study by Brémond et al. and to the calculations with LC-BLYP (LC-Becke, Lee-Yang-Parr), CAM-B3LYP (Coulomb-attenuating-method Becke-3-parameter Lee-Yang-Parr), LC-ωHPBE, and ωB97X-D. The results show that Minnesota LC-hybrid meta functionals have the smallest mean absolute deviation of ionization energy theorem VIEs with the reference data; the LC-ωHPBE functional also does quite well in this test. This is very encouraging and indicates that LC-hybrid meta functionals would be the best starting points for the tuning strategy that has been shown to be a very good procedure for improving time-dependent density functional calculations, and it also helps explain the good success of LC-hybrid meta functionals for molecular excitation energies.

UR - http://www.scopus.com/inward/record.url?scp=85112563236&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85112563236&partnerID=8YFLogxK

U2 - 10.1021/acs.jctc.1c00440

DO - 10.1021/acs.jctc.1c00440

M3 - Article

C2 - 34319716

AN - SCOPUS:85112563236

SN - 1549-9618

VL - 17

SP - 4823

EP - 4830

JO - Journal of Chemical Theory and Computation

JF - Journal of Chemical Theory and Computation

IS - 8

ER -