Exact Torque and Force Model of Bearingless Electric Machines

Anvar Khamitov, Eric L. Severson

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

This paper proposes and develops a new and exact analytic electric machine model that has several potential advantages. The model can be used to address levitation performance requirements by developing exact force/torque regulation methods to precisely calculate commands to current regulators. This allows relaxing constraints during the design stage and has the potential to enable consideration of higher performance bearingless machines. Furthermore, analogous to torque enhancement in conventional electric machines, the proposed model can be used to identify options for suspension force enhancement by controlling multiple magnetic field harmonics. This paper provides a detailed derivation of the model and shows how it can be used to improve force regulation accuracy and enhance force density.

Original languageEnglish (US)
Title of host publication2022 IEEE Energy Conversion Congress and Exposition, ECCE 2022
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781728193878
DOIs
StatePublished - 2022
Externally publishedYes
Event2022 IEEE Energy Conversion Congress and Exposition, ECCE 2022 - Detroit, United States
Duration: Oct 9 2022Oct 13 2022

Publication series

Name2022 IEEE Energy Conversion Congress and Exposition, ECCE 2022

Conference

Conference2022 IEEE Energy Conversion Congress and Exposition, ECCE 2022
Country/TerritoryUnited States
CityDetroit
Period10/9/2210/13/22

Bibliographical note

Publisher Copyright:
© 2022 IEEE.

Keywords

  • Bearingless drive
  • bearingless motor
  • generalized Clarke transformation
  • multiphase winding
  • self-bearing motor

Fingerprint

Dive into the research topics of 'Exact Torque and Force Model of Bearingless Electric Machines'. Together they form a unique fingerprint.

Cite this