Abstract
Learning the structure of a network from time-series data, in particular cyclostationary data, is of significant interest in many disciplines such as power grids, biology, finance. In this article, an algorithm is presented for reconstruction of the topology of a network of cyclostationary processes. To the best of our knowledge, this is the first work to guarantee exact recovery without any assumptions on the underlying structure. The method is based on a lifting technique by which cyclostationary processes are mapped to vector wide sense stationary processes and further on semi-definite properties of matrix Wiener filters for the said processes. We demonstrate the performance of the proposed algorithm on a Resistor-Capacitor network and present the accuracy of reconstruction for varying sample sizes.
Original language | English (US) |
---|---|
Title of host publication | 2019 American Control Conference, ACC 2019 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 4968-4973 |
Number of pages | 6 |
ISBN (Electronic) | 9781538679265 |
DOIs | |
State | Published - Jul 2019 |
Event | 2019 American Control Conference, ACC 2019 - Philadelphia, United States Duration: Jul 10 2019 → Jul 12 2019 |
Publication series
Name | Proceedings of the American Control Conference |
---|---|
Volume | 2019-July |
ISSN (Print) | 0743-1619 |
Conference
Conference | 2019 American Control Conference, ACC 2019 |
---|---|
Country/Territory | United States |
City | Philadelphia |
Period | 7/10/19 → 7/12/19 |
Bibliographical note
Publisher Copyright:© 2019 American Automatic Control Council.