Exacerbation of dystrophic cardiomyopathy by phospholamban deficiency mediated chronically increased cardiac Ca2+ cycling in vivo

Michelle L. Law, Kurt W Prins, Megan E. Olander, Joseph M Metzger

Research output: Contribution to journalArticle

Abstract

Cardiomyopathy is a significant contributor to morbidity and mortality in Duchenne muscular dystrophy (DMD). Membrane instability, leading to intracellular Ca2+ mishandling and overload, causes myocyte death and subsequent fibrosis in DMD cardiomyopathy. On a cellular level, cardiac myocytes from mdx mice have dysregulated Ca2+ handling, including increased resting Ca2+ and slow Ca2+ decay, especially evident under stress conditions. Sarco(endo)plasmic reticulum Ca2+ ATPase and its regulatory protein phospholamban (PLN) are potential therapeutic targets for DMD cardiomyopathy owing to their key role in regulating intracellular Ca2+ cycling. We tested the hypothesis that enhanced cardiac Ca2+ cycling would remediate cardiomyopathy caused by dystrophin deficiency. We used a genetic complementation model approach by crossing dystrophin-deficient mdx mice with PLN knockout (PLNKO) mice [termed double-knockout (DKO) mice]. As expected, adult cardiac myocytes isolated from DKO mice exhibited increased contractility and faster relaxation associated with increased Ca2+ transient peak height and faster Ca2+ decay rate compared with control mice. However, compared with wild-type, mdx, and PLNKO mice, DKO mice unexpectedly had reduced in vivo systolic and diastolic function as measured by echocardiography. Furthermore, Evans blue dye uptake was increased in DKO hearts compared with control, mdx, and PLNKO hearts, demonstrating increased membrane damage, which subsequently led to increased fibrosis in the DKO myocardium in vivo. In conclusion, despite enhanced intracellular Ca2+ handling at the myocyte level, DMD cardiomyopathy was exacerbated owing to unregulated chronic increases in Ca2+ cycling in DKO mice in vivo. These findings have potentially important implications for ongoing therapeutic strategies for the dystrophic heart. NEW & NOTEWORTHY This study examined the effects of phospholamban ablation on the pathophysiology of cardiomyopathy in dystrophin-deficient mice. In this setting, contractility and Ca2+ cycling were enhanced in isolated myocytes; however, in vivo heart function was diminished. Additionally, sarcolemmal integrity was compromised and fibrosis was increased. This is the first study, to our knowledge, examining unregulated Ca2+ cycling in the dystrophin-deficient heart. Results from this study have implications for potential therapies targeting Ca2+ handling in dystrophic cardiomyopathy.

Original languageEnglish (US)
Pages (from-to)H1544-H1552
JournalAmerican Journal of Physiology - Heart and Circulatory Physiology
Volume315
Issue number6
DOIs
StatePublished - Dec 1 2018

Fingerprint

Cardiomyopathies
Knockout Mice
Dystrophin
Duchenne Muscular Dystrophy
Muscle Cells
Inbred mdx Mouse
Fibrosis
Cardiac Myocytes
Evans Blue
Reticulum
Membranes
Calcium-Transporting ATPases
Genetic Models
phospholamban
Echocardiography
Cause of Death
Myocardium
Coloring Agents
Therapeutics
Morbidity

Keywords

  • Calcium
  • Duchenne muscular dystrophy
  • Dystrophin
  • Heart
  • Mdx

PubMed: MeSH publication types

  • Journal Article
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

Cite this

@article{022162b78ebd474eb5244e018709a16e,
title = "Exacerbation of dystrophic cardiomyopathy by phospholamban deficiency mediated chronically increased cardiac Ca2+ cycling in vivo",
abstract = "Cardiomyopathy is a significant contributor to morbidity and mortality in Duchenne muscular dystrophy (DMD). Membrane instability, leading to intracellular Ca2+ mishandling and overload, causes myocyte death and subsequent fibrosis in DMD cardiomyopathy. On a cellular level, cardiac myocytes from mdx mice have dysregulated Ca2+ handling, including increased resting Ca2+ and slow Ca2+ decay, especially evident under stress conditions. Sarco(endo)plasmic reticulum Ca2+ ATPase and its regulatory protein phospholamban (PLN) are potential therapeutic targets for DMD cardiomyopathy owing to their key role in regulating intracellular Ca2+ cycling. We tested the hypothesis that enhanced cardiac Ca2+ cycling would remediate cardiomyopathy caused by dystrophin deficiency. We used a genetic complementation model approach by crossing dystrophin-deficient mdx mice with PLN knockout (PLNKO) mice [termed double-knockout (DKO) mice]. As expected, adult cardiac myocytes isolated from DKO mice exhibited increased contractility and faster relaxation associated with increased Ca2+ transient peak height and faster Ca2+ decay rate compared with control mice. However, compared with wild-type, mdx, and PLNKO mice, DKO mice unexpectedly had reduced in vivo systolic and diastolic function as measured by echocardiography. Furthermore, Evans blue dye uptake was increased in DKO hearts compared with control, mdx, and PLNKO hearts, demonstrating increased membrane damage, which subsequently led to increased fibrosis in the DKO myocardium in vivo. In conclusion, despite enhanced intracellular Ca2+ handling at the myocyte level, DMD cardiomyopathy was exacerbated owing to unregulated chronic increases in Ca2+ cycling in DKO mice in vivo. These findings have potentially important implications for ongoing therapeutic strategies for the dystrophic heart. NEW & NOTEWORTHY This study examined the effects of phospholamban ablation on the pathophysiology of cardiomyopathy in dystrophin-deficient mice. In this setting, contractility and Ca2+ cycling were enhanced in isolated myocytes; however, in vivo heart function was diminished. Additionally, sarcolemmal integrity was compromised and fibrosis was increased. This is the first study, to our knowledge, examining unregulated Ca2+ cycling in the dystrophin-deficient heart. Results from this study have implications for potential therapies targeting Ca2+ handling in dystrophic cardiomyopathy.",
keywords = "Calcium, Duchenne muscular dystrophy, Dystrophin, Heart, Mdx",
author = "Law, {Michelle L.} and Prins, {Kurt W} and Olander, {Megan E.} and Metzger, {Joseph M}",
year = "2018",
month = "12",
day = "1",
doi = "10.1152/ajpheart.00341.2018",
language = "English (US)",
volume = "315",
pages = "H1544--H1552",
journal = "American Journal of Physiology - Cell Physiology",
issn = "0363-6143",
publisher = "American Physiological Society",
number = "6",

}

TY - JOUR

T1 - Exacerbation of dystrophic cardiomyopathy by phospholamban deficiency mediated chronically increased cardiac Ca2+ cycling in vivo

AU - Law, Michelle L.

AU - Prins, Kurt W

AU - Olander, Megan E.

AU - Metzger, Joseph M

PY - 2018/12/1

Y1 - 2018/12/1

N2 - Cardiomyopathy is a significant contributor to morbidity and mortality in Duchenne muscular dystrophy (DMD). Membrane instability, leading to intracellular Ca2+ mishandling and overload, causes myocyte death and subsequent fibrosis in DMD cardiomyopathy. On a cellular level, cardiac myocytes from mdx mice have dysregulated Ca2+ handling, including increased resting Ca2+ and slow Ca2+ decay, especially evident under stress conditions. Sarco(endo)plasmic reticulum Ca2+ ATPase and its regulatory protein phospholamban (PLN) are potential therapeutic targets for DMD cardiomyopathy owing to their key role in regulating intracellular Ca2+ cycling. We tested the hypothesis that enhanced cardiac Ca2+ cycling would remediate cardiomyopathy caused by dystrophin deficiency. We used a genetic complementation model approach by crossing dystrophin-deficient mdx mice with PLN knockout (PLNKO) mice [termed double-knockout (DKO) mice]. As expected, adult cardiac myocytes isolated from DKO mice exhibited increased contractility and faster relaxation associated with increased Ca2+ transient peak height and faster Ca2+ decay rate compared with control mice. However, compared with wild-type, mdx, and PLNKO mice, DKO mice unexpectedly had reduced in vivo systolic and diastolic function as measured by echocardiography. Furthermore, Evans blue dye uptake was increased in DKO hearts compared with control, mdx, and PLNKO hearts, demonstrating increased membrane damage, which subsequently led to increased fibrosis in the DKO myocardium in vivo. In conclusion, despite enhanced intracellular Ca2+ handling at the myocyte level, DMD cardiomyopathy was exacerbated owing to unregulated chronic increases in Ca2+ cycling in DKO mice in vivo. These findings have potentially important implications for ongoing therapeutic strategies for the dystrophic heart. NEW & NOTEWORTHY This study examined the effects of phospholamban ablation on the pathophysiology of cardiomyopathy in dystrophin-deficient mice. In this setting, contractility and Ca2+ cycling were enhanced in isolated myocytes; however, in vivo heart function was diminished. Additionally, sarcolemmal integrity was compromised and fibrosis was increased. This is the first study, to our knowledge, examining unregulated Ca2+ cycling in the dystrophin-deficient heart. Results from this study have implications for potential therapies targeting Ca2+ handling in dystrophic cardiomyopathy.

AB - Cardiomyopathy is a significant contributor to morbidity and mortality in Duchenne muscular dystrophy (DMD). Membrane instability, leading to intracellular Ca2+ mishandling and overload, causes myocyte death and subsequent fibrosis in DMD cardiomyopathy. On a cellular level, cardiac myocytes from mdx mice have dysregulated Ca2+ handling, including increased resting Ca2+ and slow Ca2+ decay, especially evident under stress conditions. Sarco(endo)plasmic reticulum Ca2+ ATPase and its regulatory protein phospholamban (PLN) are potential therapeutic targets for DMD cardiomyopathy owing to their key role in regulating intracellular Ca2+ cycling. We tested the hypothesis that enhanced cardiac Ca2+ cycling would remediate cardiomyopathy caused by dystrophin deficiency. We used a genetic complementation model approach by crossing dystrophin-deficient mdx mice with PLN knockout (PLNKO) mice [termed double-knockout (DKO) mice]. As expected, adult cardiac myocytes isolated from DKO mice exhibited increased contractility and faster relaxation associated with increased Ca2+ transient peak height and faster Ca2+ decay rate compared with control mice. However, compared with wild-type, mdx, and PLNKO mice, DKO mice unexpectedly had reduced in vivo systolic and diastolic function as measured by echocardiography. Furthermore, Evans blue dye uptake was increased in DKO hearts compared with control, mdx, and PLNKO hearts, demonstrating increased membrane damage, which subsequently led to increased fibrosis in the DKO myocardium in vivo. In conclusion, despite enhanced intracellular Ca2+ handling at the myocyte level, DMD cardiomyopathy was exacerbated owing to unregulated chronic increases in Ca2+ cycling in DKO mice in vivo. These findings have potentially important implications for ongoing therapeutic strategies for the dystrophic heart. NEW & NOTEWORTHY This study examined the effects of phospholamban ablation on the pathophysiology of cardiomyopathy in dystrophin-deficient mice. In this setting, contractility and Ca2+ cycling were enhanced in isolated myocytes; however, in vivo heart function was diminished. Additionally, sarcolemmal integrity was compromised and fibrosis was increased. This is the first study, to our knowledge, examining unregulated Ca2+ cycling in the dystrophin-deficient heart. Results from this study have implications for potential therapies targeting Ca2+ handling in dystrophic cardiomyopathy.

KW - Calcium

KW - Duchenne muscular dystrophy

KW - Dystrophin

KW - Heart

KW - Mdx

UR - http://www.scopus.com/inward/record.url?scp=85060180196&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85060180196&partnerID=8YFLogxK

U2 - 10.1152/ajpheart.00341.2018

DO - 10.1152/ajpheart.00341.2018

M3 - Article

C2 - 30118340

AN - SCOPUS:85060180196

VL - 315

SP - H1544-H1552

JO - American Journal of Physiology - Cell Physiology

JF - American Journal of Physiology - Cell Physiology

SN - 0363-6143

IS - 6

ER -