Abstract
Continual learning, the capability to learn new knowledge from streaming data without forgetting the previous knowledge, is a critical requirement for dynamic learning systems, especially for emerging edge devices such as self-driving cars and drones. However, continual learning is still facing the catastrophic forgetting problem. Previous work illustrate that model performance on continual learning is not only related to the learning algorithms but also strongly dependent on the inherited model, i.e., the model where continual learning starts. The better stability of the inherited model, the less catastrophic forgetting and thus, the inherited model should be elaborately selected. Inspired by this finding, we develop an evolutionary neural architecture search (ENAS) algorithm that emphasizes the Stability of the inherited model, namely ENAS-S. ENAS-S aims to find optimal architectures for accurate continual learning on edge devices. On CIFAR-10 and CIFAR-100, we present that ENAS-S achieves competitive architectures with lower catastrophic forgetting and smaller model size when learning from a data stream, as compared with handcrafted DNNs.
Original language | English (US) |
---|---|
Title of host publication | IJCNN 2021 - International Joint Conference on Neural Networks, Proceedings |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
ISBN (Electronic) | 9780738133669 |
DOIs | |
State | Published - Jul 18 2021 |
Externally published | Yes |
Event | 2021 International Joint Conference on Neural Networks, IJCNN 2021 - Virtual, Shenzhen, China Duration: Jul 18 2021 → Jul 22 2021 |
Publication series
Name | Proceedings of the International Joint Conference on Neural Networks |
---|---|
Volume | 2021-July |
Conference
Conference | 2021 International Joint Conference on Neural Networks, IJCNN 2021 |
---|---|
Country/Territory | China |
City | Virtual, Shenzhen |
Period | 7/18/21 → 7/22/21 |
Bibliographical note
Publisher Copyright:© 2021 IEEE.
Keywords
- Deep neural network
- continual learning
- neural architecture search
- online learning