Abstract
To understand rapid evolution in plant resistance to herbivory, it is critical to determine how the genetic correlation among resistances varies genetically and/or environmentally. We conducted a reciprocal transplant experiment of tall goldenrod, Solidago altissima with multiple replicates within the native range (USA) and the introduced range (Japan) to explore the differences in phenotypic traits of resistance to multiple herbivorous insects and their relationships between and within the countries. The Japanese plants were more resistant to the lace bug, Corythucha marmorata, which had recently invaded Japan, but were more susceptible to other herbivorous insects compared to the USA plants. An antagonistic relationship was found between plant resistances to lace bugs and other herbivorous insects in both USA and Japanese plants. In addition, this relationship was more obvious in gardens with a high level of foliage damage than in gardens with a low level of foliage damage by other herbivorous insects. An antagonistic relationship between resistances to aphids and lace bugs was also observed in USA gardens, but not in Japanese garden. These results suggest that the strength of constraints on the evolution of plant resistance due to genetic trade-offs may differ among biotic environments, including community structure of herbivorous insects. Therefore, differences in herbivorous insect communities between the native and introduced ranges can result in the rapid evolution of greater resistance in plants in the introduced range than in the native range.
Original language | English (US) |
---|---|
Pages (from-to) | 547-559 |
Number of pages | 13 |
Journal | Evolutionary Ecology |
Volume | 32 |
Issue number | 5 |
DOIs | |
State | Published - Oct 1 2018 |
Bibliographical note
Funding Information:Acknowledgements We greatly appreciate T. Ida, K. Hashimoto, S. Hirano, S. Yamamura, M. Tokuda, S. Adachi, A. Yamasaki, and members of Laboratory of Systems Ecology in Saga University and Laboratory of Animal Ecology in Yamagata University for field work assistance. The present study was partly supported by the Japan Society for the Promotion of Science (JSPS) through Grant-Aid for Science Research (B-25291102) to T. O.
Publisher Copyright:
© 2018, Springer Nature Switzerland AG.
Keywords
- Biological invasion
- Plant defense
- Plant-insect interaction
- Reciprocal transplant experiment
- Solidago altissima