Evolution of competitive fitness in experimental populations of E. coli: What makes one genotype a better competitor than another?

Richard E. Lenski, Judith A. Mongold, Paul D. Sniegowski, Michael Travisano, Farida Vasi, Philip J. Gerrish, Thomas M. Schmidt

Research output: Contribution to journalArticlepeer-review

124 Scopus citations


An important problem in microbial ecology is to identify those phenotypic attributes that are responsible for competitive fitness in a particular environment. Thousands of papers have been published on the physiology, biochemistry, and molecular genetics of Escherichia coli and other bacterial models. Nonetheless, little is known about what makes one genotype a better competitor than another even in such well studied systems. Here, we review experiments to identify the phenotypic bases of improved competitive fitness in twelve E. coli populations that evolved for thousands of generations in a defined environment, in which glucose was the limiting substrate. After 10,000 generations, the average fitness of the derived genotypes had increased by ~ 50% relative to the ancestor, based on competition experiments using marked strains in the same environment. The growth kinetics of the ancestral and derived genotypes showed that the latter have a shorter lag phase upon transfer into fresh medium and a higher maximum growth rate. Competition experiments were also performed in environments where other substrates were substituted for glucose. The derived genotypes are generally more fit in competition for those substrates that use the same mechanism of transport as glucose, which suggests that enhanced transport was an important target of natural selection in the evolutionary environment. All of the derived genotypes produce much larger cells than does the ancestor, even when both types are forced to grow at the same rate. Some, but not all, of the derived genotypes also have greatly elevated mutation rates. Efforts are now underway to identify the genetic changes that underlie those phenotypic changes, especially substrate specificity and elevated mutation rate, for which there are good candidate loci. Identification and subsequent manipulation of these genes may provide new insights into the reproducibility of adaptive evolution, the importance of co-adapted gene complexes, and the extent to which distinct phenotypes (e.g., substrate specificity and cell size) are affected by the same mutations.

Original languageEnglish (US)
Pages (from-to)35-47
Number of pages13
JournalAntonie van Leeuwenhoek, International Journal of General and Molecular Microbiology
Issue number1
StatePublished - 1998

Bibliographical note

Funding Information:
We thank A. Bennett, D. Dykhuizen, L. Forney, and M. Rose for stimulating discussions of the issues raised in this paper; M. Blot, M. Stanek, and M. Thomashow for new collaborations to identify the molecular changes that underlie the phenotypic evolution reviewed here; and a reviewer for helpful comments on our paper. Our research is supported by the NSF Science and Technology Center for Microbial Ecology (BIR-9120006) and an NSF grant (DEB-9421237) to R.E.L.


  • Cell size
  • Competition
  • Evolution
  • Fitness
  • Nutrient specificity
  • Selection


Dive into the research topics of 'Evolution of competitive fitness in experimental populations of E. coli: What makes one genotype a better competitor than another?'. Together they form a unique fingerprint.

Cite this