Evolution from B2g Nematics to B1g Nematics in Heavily Hole-Doped Iron-Based Superconductors

Vladislav Borisov, Rafael M. Fernandes, Roser Valentí

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

Recent experiments reported an unusual nematic behavior of heavily hole-doped pnictides AFe2As2, with alkali A=Rb, Cs. In contrast to the B2g nematic order of the parent AeFe2As2 compounds (with alkaline earth Ae=Sr, Ba), characterized by unequal nearest-neighbor Fe-Fe bonds, in the hole-doped systems nematic order is observed in the B1g channel, characterized by unequal next-nearest-neighbor Fe-Fe (diagonal Fe-As-Fe) bonds. In this Letter, using density functional theory, we attribute this behavior to the evolution of the magnetic ground state along the series Ae1-xAxFe2As2, from single stripes for small x to double stripes for large x. Our simulations using the reduced Stoner theory show that fluctuations of Fe moments are essential for the stability of the double-stripe configuration. We propose that the change in the nature of the magnetic ground state is responsible for the change in the symmetry of the vestigial nematic order that it supports.

Original languageEnglish (US)
Article number146402
JournalPhysical review letters
Volume123
Issue number14
DOIs
StatePublished - Oct 4 2019

Bibliographical note

Funding Information:
In summary, our first-principles calculations of the magnetic ground states of 122-type iron-based compounds show that the dominant magnetic instability in these systems is strongly affected by the nature of the spacer cation substitution. For RbFe 2 As 2 , we found that the double-stripe state becomes the leading instability, in contrast to the single-stripe order in SrFe 2 As 2 . Analysis of the various contributions involved in the calculations showed that the magnetic order is more sensitive to the electron count variation due to the Sr → Rb substitution than to the related structural changes. Based on these results, we proposed that the evolution of the nematic state from B 2 g for SrFe 2 As 2 to B 1 g for RbFe 2 As 2 is a consequence of the change in the vestigial ordered states supported by the single-stripe and double-stripe orders [45] . Our results have important experimental consequences that can in principle be verified. First, even though RbFe 2 As 2 is not magnetic, it should have strong magnetic fluctuations peaked at the Q 3 = ( π / 2 , π / 2 ) wave vector, present above the nematic transition and enhanced below it. In contrast, the mechanism proposed in Ref.  [16] relies on incommensurate fluctuations. To the best of our knowledge, there are no inelastic neutron scattering measurements available for RbFe 2 As 2 , which could distinguish between these two scenarios. Neutron scattering in the related n d = 5.5     KFe 2 As 2 compound reveals incommensurate spin fluctuations peaked at ( π ( 1 ± 2 δ ) , 0 ) with δ ≈ 0.16 [47] , which, according to our model, is consistent with the absence of B 1 g nematic order in this system. Also, our phase diagram in Fig.  1 shows that uniaxial strain along the c axis can tune the magnetic ground state for compounds with intermediate levels of hole doping. This offers the possibility to tune the nematic state from B 2 g to B 1 g as a function of strain or pressure. We thank T. Shibauchi and J. Schmalian for fruitful discussions. V. B. and R. V. were financially supported by DFG Sonderforschungsbereich TRR 49. The computer time was allotted by the center for supercomputing (CSC) in Frankfurt and by the computer center of Goethe University. R. M. F. was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award No. DE-SC0012336. Parts of some figures have been produced with vesta 3 (Ref.  [48] ). [1] 1 P. J. Hirschfeld , M. M. Korshunov , and I. I. Mazin , Rep. Prog. Phys. 74 , 124508 ( 2011 ). RPPHAG 0034-4885 10.1088/0034-4885/74/12/124508 [2] 2 A. Chubukov , Annu. Rev. Condens. Matter Phys. 3 , 57 ( 2012 ). ARCMCX 1947-5454 10.1146/annurev-conmatphys-020911-125055 [3] 3 D. C. Johnston , Adv. Phys. 59 , 803 ( 2010 ). ADPHAH 0001-8732 10.1080/00018732.2010.513480 [4] 4 P. C. Canfield and S. L. Bud’ko , Annu. Rev. Condens. Matter Phys. 1 , 27 ( 2010 ). ARCMCX 1947-5454 10.1146/annurev-conmatphys-070909-104041 [5] 5 H.-H. Wen and S. Li , Annu. Rev. Condens. Matter Phys. 2 , 121 ( 2011 ). ARCMCX 1947-5454 10.1146/annurev-conmatphys-062910-140518 [6] 6 R. M. Fernandes , A. V. Chubukov , and J. Schmalian , Nat. Phys. 10 , 97 ( 2014 ). NPAHAX 1745-2473 10.1038/nphys2877 [7] 7 R. M. Fernandes , A. E. Böhmer , C. Meingast , and J. Schmalian , Phys. Rev. Lett. 111 , 137001 ( 2013 ). PRLTAO 0031-9007 10.1103/PhysRevLett.111.137001 [8] 8 A. E. Böhmer and C. Meingast , C.R. Phys. 17 , 90 ( 2016 ). CRPOBN 1631-0705 10.1016/j.crhy.2015.07.001 [9] 9 C. Xu , M. Müller , and S. Sachdev , Phys. Rev. B 78 , 020501(R) ( 2008 ). PRBMDO 1098-0121 10.1103/PhysRevB.78.020501 [10] 10 C. Fang , H. Yao , W.-F. Tsai , J. P. Hu , and S. A. Kivelson , Phys. Rev. B 77 , 224509 ( 2008 ). PRBMDO 1098-0121 10.1103/PhysRevB.77.224509 [11] 11 R. M. Fernandes , A. V. Chubukov , J. Knolle , I. Eremin , and J. Schmalian , Phys. Rev. B 85 , 024534 ( 2012 ). PRBMDO 1098-0121 10.1103/PhysRevB.85.024534 [12] 12 S. Liang , A. Moreo , and E. Dagotto , Phys. Rev. Lett. 111 , 047004 ( 2013 ). PRLTAO 0031-9007 10.1103/PhysRevLett.111.047004 [13] 13 J. Li , D. Zhao , Y. P. Wu , S. J. Li , D. W. Song , L. X. Zheng , N. Z. Wang , X. G. Luo , Z. Sun , T. Wu , and X. H. Chen , arXiv:1611.04694 . [14] 14 X. Liu , R. Tao , M. Ren , W. Chen , Q. Yao , T. Wolf , Y. Yan , T. Zhang , and D. Feng , Nat. Commun. 10 , 1039 ( 2019 ). NCAOBW 2041-1723 10.1038/s41467-019-08962-z [15] 15 K. Ishida , M. Tsujii , S. Hosoi , Y. Mizukami , S. Ishida , A. Iyo , H. Eisaki , T. Wolf , K. Grube , H. v. Löhneysen , R. M. Fernandes , and T. Shibauchi , arXiv:1812.05267 . [16] 16 S. Onari and H. Kontani , Phys. Rev. B 100 , 020507(R) ( 2019 ). PRBMDO 2469-9950 10.1103/PhysRevB.100.020507 [17] 17 C.-Y. Moon and H. J. Choi , Phys. Rev. Lett. 104 , 057003 ( 2010 ). PRLTAO 0031-9007 10.1103/PhysRevLett.104.057003 [18] 18 F. Hardy , A. E. Böhmer , L. de’ Medici , M. Capone , G. Giovannetti , R. Eder , L. Wang , M. He , T. Wolf , P. Schweiss , R. Heid , A. Herbig , P. Adelmann , R. A. Fisher , and C. Meingast , Phys. Rev. B 94 , 205113 ( 2016 ). PRBMDO 2469-9950 10.1103/PhysRevB.94.205113 [19] 19 Z. P. Yin , K. Haule , and G. Kotliar , Nat. Mater. 10 , 932 ( 2011 ). NMAACR 1476-1122 10.1038/nmat3120 [20] 20 L. de’ Medici , G. Giovannetti , and M. Capone , Phys. Rev. Lett. 112 , 177001 ( 2014 ). PRLTAO 0031-9007 10.1103/PhysRevLett.112.177001 [21] 21 J. Diehl , S. Backes , D. Guterding , H. O. Jeschke , and R. Valentí , Phys. Rev. B 90 , 085110 ( 2014 ). PRBMDO 1098-0121 10.1103/PhysRevB.90.085110 [22] 22 S. Backes , H. O. Jeschke , and R. Valentí , Phys. Rev. B 92 , 195128 ( 2015 ). PRBMDO 1098-0121 10.1103/PhysRevB.92.195128 [23] 23 L. Ortenzi , I. I. Mazin , P. Blaha , and L. Boeri , Phys. Rev. B 86 , 064437 ( 2012 ). PRBMDO 1098-0121 10.1103/PhysRevB.86.064437 [24] 24 L. Ortenzi , H. Gretarsson , S. Kasahara , Y. Matsuda , T. Shibauchi , K. D. Finkelstein , W. Wu , S. R. Julian , Y.-J. Kim , I. I. Mazin , and L. Boeri , Phys. Rev. Lett. 114 , 047001 ( 2015 ). PRLTAO 0031-9007 10.1103/PhysRevLett.114.047001 [25] 25 M. Tegel , M. Rotter , V. Weiß , F. M. Schappacher , R. Pöttgen , and D. Johrendt , J. Phys. Condens. Matter 20 , 452201 ( 2008 ). JCOMEL 0953-8984 10.1088/0953-8984/20/45/452201 [26] 26 F. Eilers , K. Grube , D. A. Zocco , T. Wolf , M. Merz , P. Schweiss , R. Heid , R. Eder , R. Yu , J.-X. Zhu , Q. Si , T. Shibauchi , and H. v. Löhneysen , Phys. Rev. Lett. 116 , 237003 ( 2016 ). PRLTAO 0031-9007 10.1103/PhysRevLett.116.237003 [27] 27 The sufficient accuracy of the chosen DFT approach is indicated by the fact that, when optimized, the structures of the end compounds would agree well with the measured ones (more details in Section II of the Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.123.146402 , which includes Refs. [28–30]). Throughout the Letter, however, the room-temperature experimental structures were used. [28] 28 G. Kresse and J. Hafner , Phys. Rev. B 47 , 558(R) ( 1993 ). PRBMDO 0163-1829 10.1103/PhysRevB.47.558 [29] 29 N. Colonna , G. Profeta , A. Continenza , and S. Massidda , Phys. Rev. B 83 , 094529 ( 2011 ). PRBMDO 1098-0121 10.1103/PhysRevB.83.094529 [30] 30 M. Tomić , R. Valentí , and H. O. Jeschke , Phys. Rev. B 85 , 094105 ( 2012 ). PRBMDO 1098-0121 10.1103/PhysRevB.85.094105 [31] 31 ELK FP-LAPW code ( http://elk.sourceforge.net/ ). [32] 32 J. P. Perdew , K. Burke , and M. Ernzerhof , Phys. Rev. Lett. 77 , 3865 ( 1996 ). PRLTAO 0031-9007 10.1103/PhysRevLett.77.3865 [33] 33 R. J. McQueeney , S. O. Diallo , V. P. Antropov , G. D. Samolyuk , C. Broholm , N. Ni , S. Nandi , M. Yethiraj , J. L. Zarestky , J. J. Pulikkotil , A. Kreyssig , M. D. Lumsden , B. N. Harmon , P. C. Canfield , and A. I. Goldman , Phys. Rev. Lett. 101 , 227205 ( 2008 ). PRLTAO 0031-9007 10.1103/PhysRevLett.101.227205 [34] 34 Q. Huang , Y. Qiu , W. Bao , M. A. Green , J. W. Lynn , Y. C. Gasparovic , T. Wu , G. Wu , and X. H. Chen , Phys. Rev. Lett. 101 , 257003 ( 2008 ). PRLTAO 0031-9007 10.1103/PhysRevLett.101.257003 [35] 35 C. de la Cruz , Q. Huang , J. Lynn , J. Li , W. Ratcliff II , J. Zarestky , H. Mook , G. Chen , J. Luo , N. Wang , and P. Dai , Nature (London) 453 , 899 ( 2008 ). NATUAS 0028-0836 10.1038/nature07057 [36] We note that, in our simulations, the single-stripe order remains the ground state of SrFe 2 As 2 even for smaller values of s , as illustrated by Fig. S1 in the Supplemental Material. [37] 37 I. Opahle , H. C. Kandpal , Y. Zhang , C. Gros , and R. Valentí , Phys. Rev. B 79 , 024509 ( 2009 ). PRBMDO 1098-0121 10.1103/PhysRevB.79.024509 [38] 38 R. M. Fernandes , P. P. Orth , and J. Schmalian , Annu. Rev. Condens. Matter Phys. 10 , 133 ( 2019 ). ARCMCX 1947-5454 10.1146/annurev-conmatphys-031218-013200 [39] 39 I. Paul , A. Cano , and K. Sengupta , Phys. Rev. B 83 , 115109 ( 2011 ). PRBMDO 1098-0121 10.1103/PhysRevB.83.115109 [40] 40 G. Zhang , J. K. Glasbrenner , R. Flint , I. I. Mazin , and R. M. Fernandes , Phys. Rev. B 95 , 174402 ( 2017 ). PRBMDO 2469-9950 10.1103/PhysRevB.95.174402 [41] 41 C. B. Bishop , J. Herbrych , E. Dagotto , and A. Moreo , Phys. Rev. B 96 , 035144 ( 2017 ). PRBMDO 2469-9950 10.1103/PhysRevB.96.035144 [42] 42 J. J. Wu , J. F. Lin , X. C. Wang , Q. Q. Liu , J. L. Zhu , Y. M. Xiao , P. Chow , and C. Q. Jin , Sci. Rep. 4 , 3685 ( 2014 ). SRCEC3 2045-2322 10.1038/srep03685 [43] 43 J. K. Glasbrenner , I. I. Mazin , H. O. Jeschke , P. J. Hirschfeld , R. M. Fernandes , and R. Valentí , Nat. Phys. 11 , 953 ( 2015 ). NPAHAX 1745-2473 10.1038/nphys3434 [44] 44 F. Hardy , A. E. Böhmer , D. Aoki , P. Burger , T. Wolf , P. Schweiss , R. Heid , P. Adelmann , Y. X. Yao , G. Kotliar , J. Schmalian , and C. Meingast , Phys. Rev. Lett. 111 , 027002 ( 2013 ). PRLTAO 0031-9007 10.1103/PhysRevLett.111.027002 [45] Recently a different scenario of nematicity has been proposed [46] . [46] 46 Y. Wang , W. Hu , R. Yu , and Q. Si , arXiv:1903.00375 . [47] 47 C. H. Lee , K. Kihou , H. Kawano-Furukawa , T. Saito , A. Iyo , H. Eisaki , H. Fukazawa , Y. Kohori , K. Suzuki , H. Usui , K. Kuroki , and K. Yamada , Phys. Rev. Lett. 106 , 067003 ( 2011 ). PRLTAO 0031-9007 10.1103/PhysRevLett.106.067003 [48] 48 K. Momma and F. Izumi , J. Appl. Crystallogr. 44 , 1272 ( 2011 ). JACGAR 0021-8898 10.1107/S0021889811038970

PubMed: MeSH publication types

  • Journal Article

Fingerprint

Dive into the research topics of 'Evolution from B2g Nematics to B1g Nematics in Heavily Hole-Doped Iron-Based Superconductors'. Together they form a unique fingerprint.

Cite this