TY - JOUR
T1 - Evidence that the phytochrome gene family in black cottonwood has one PHYA locus and two PHYB loci but lacks members of the PHYC/F and PHYE subfamilies
AU - Howe, Glenn T.
AU - Bucciaglia, Paul A.
AU - Hackett, Wesley P.
AU - Furnier, Glenn R.
AU - Cordonnier-Pratt, Marie Michèle
AU - Gardner, Gary
N1 - Copyright:
Copyright 2017 Elsevier B.V., All rights reserved.
PY - 1998/2
Y1 - 1998/2
N2 - The phytochrome photoreceptors play important roles in the photoperiodic control of vegetative bud set, growth cessation, dormancy induction, and cold-hardiness in trees. Interestingly, ecotypic differences in photoperiodic responses are observed in many temperate-zone tree species. Northern and southern ecotypes of black cottonwood (Populus trichocarpa Torr. and Gray), for example, exhibit marked differences in the timing of short-day-induced bud set and growth cessation, and these responses are controlled by phytochrome. Therefore, as a first step toward determining the molecular genetic basis of photoperiodic ecotypes in trees, we characterized the phytochrome gene (PHY) family in black cottonwood. We recovered fragments of one PHYA and two PHYB using PCR-based cloning and by screening a genomic library. Results from Southern analyses confirmed that black cottonwood has one PHYA locus and two PHYB loci, which we arbitrarily designated PHYB1 and PHYB2. Phylogenetic analyses which included PHY from black cottonwood, Arabidopsis thaliana and tomato (Solanum lycopersicum) suggest that the PHYB/D duplications in these species occurred independently. When Southern blots were probed with PHYC, PHYE, and PHYF heterologous probes, the strongest bands that we detected were those of black cottonwood PHYA and/or PHYB. These results suggest that black cottonwood lacks members of the PHYC/F and PHYE subfamilies. Although black cottonwood could contain additional PHY that are distantly related to known angiosperm PHY, our results imply that the PHY family of black cottonwood is less complex than that of other well- characterized dicot species such as Arabidopsis and tomato. Based on Southern analyses of five black cottonwood genotypes representing three photoperiodic ecotypes, substantial polymorphism was detected for at least one of the PHYB loci but not for the PHYA locus. The novel character of the PHY family in black cottonwood, as well as the differences in polymorphism we observed between the PHYA and PHYB subfamilies, indicates that a number of fundamental macro- and microevolutionary questions remain to be answered about the PHY family in dicots.
AB - The phytochrome photoreceptors play important roles in the photoperiodic control of vegetative bud set, growth cessation, dormancy induction, and cold-hardiness in trees. Interestingly, ecotypic differences in photoperiodic responses are observed in many temperate-zone tree species. Northern and southern ecotypes of black cottonwood (Populus trichocarpa Torr. and Gray), for example, exhibit marked differences in the timing of short-day-induced bud set and growth cessation, and these responses are controlled by phytochrome. Therefore, as a first step toward determining the molecular genetic basis of photoperiodic ecotypes in trees, we characterized the phytochrome gene (PHY) family in black cottonwood. We recovered fragments of one PHYA and two PHYB using PCR-based cloning and by screening a genomic library. Results from Southern analyses confirmed that black cottonwood has one PHYA locus and two PHYB loci, which we arbitrarily designated PHYB1 and PHYB2. Phylogenetic analyses which included PHY from black cottonwood, Arabidopsis thaliana and tomato (Solanum lycopersicum) suggest that the PHYB/D duplications in these species occurred independently. When Southern blots were probed with PHYC, PHYE, and PHYF heterologous probes, the strongest bands that we detected were those of black cottonwood PHYA and/or PHYB. These results suggest that black cottonwood lacks members of the PHYC/F and PHYE subfamilies. Although black cottonwood could contain additional PHY that are distantly related to known angiosperm PHY, our results imply that the PHY family of black cottonwood is less complex than that of other well- characterized dicot species such as Arabidopsis and tomato. Based on Southern analyses of five black cottonwood genotypes representing three photoperiodic ecotypes, substantial polymorphism was detected for at least one of the PHYB loci but not for the PHYA locus. The novel character of the PHY family in black cottonwood, as well as the differences in polymorphism we observed between the PHYA and PHYB subfamilies, indicates that a number of fundamental macro- and microevolutionary questions remain to be answered about the PHY family in dicots.
KW - Gene family
KW - Photoperiodic ecotypes
KW - Phylogeny
KW - Phytochromes
KW - Populus trichocarpa
KW - Tree
UR - http://www.scopus.com/inward/record.url?scp=0031936573&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0031936573&partnerID=8YFLogxK
U2 - 10.1093/oxfordjournals.molbev.a025912
DO - 10.1093/oxfordjournals.molbev.a025912
M3 - Article
C2 - 9491613
AN - SCOPUS:0031936573
SN - 0737-4038
VL - 15
SP - 160
EP - 175
JO - Molecular biology and evolution
JF - Molecular biology and evolution
IS - 2
ER -