EveryoneCounts: Data-driven digital advertising with uncertain demand model in metro networks

Desheng Zhang, Riiobing Jiang, Shiiai Wang, Yanmin Zhu, Bo Yang, Jian Cao, Fan Zhang, Tian He

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

Nowadays most metro advertising systems schedule advertising slots on digital advertising screens to achieve the maximum exposure to passengers by exploring passenger demand models. However, our empirical results show that these passenger demand models experience uncertainty at fine temporal granularity (e.g., per min). As a result, for fine-grained advertisements (shorter than one minute), a scheduling based on these demand models cannot achieve the maximum advertisement exposure. To address this issue, we propose an online advertising approach, called EveryoneCounts, based on an uncertain passenger demand model. It combines coarse-grained statistical demand modeling and fine-grained Bayesian demand modeling by leveraging realtime card-swiping records along with both passenger mobility patterns and travel periods within metro systems. Based on this uncertain demand model, it schedules advertising time online based on robust receding horizon control to maximize the advertisement exposure. We evaluate the proposed approach based on an one-month sample from our 530 GB real-world metro fare dataset with 16 million cards. The results show that our approach provides a 61.5% lower traffic prediction error and 20% improvement on advertising efficiency on average.

Original languageEnglish (US)
Title of host publicationProceedings - 2015 IEEE International Conference on Big Data, IEEE Big Data 2015
EditorsFeng Luo, Kemafor Ogan, Mohammed J. Zaki, Laura Haas, Beng Chin Ooi, Vipin Kumar, Sudarsan Rachuri, Saumyadipta Pyne, Howard Ho, Xiaohua Hu, Shipeng Yu, Morris Hui-I Hsiao, Jian Li
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages898-907
Number of pages10
ISBN (Electronic)9781479999255
DOIs
StatePublished - Dec 22 2015
Event3rd IEEE International Conference on Big Data, IEEE Big Data 2015 - Santa Clara, United States
Duration: Oct 29 2015Nov 1 2015

Publication series

NameProceedings - 2015 IEEE International Conference on Big Data, IEEE Big Data 2015

Other

Other3rd IEEE International Conference on Big Data, IEEE Big Data 2015
CountryUnited States
CitySanta Clara
Period10/29/1511/1/15

Fingerprint Dive into the research topics of 'EveryoneCounts: Data-driven digital advertising with uncertain demand model in metro networks'. Together they form a unique fingerprint.

  • Cite this

    Zhang, D., Jiang, R., Wang, S., Zhu, Y., Yang, B., Cao, J., Zhang, F., & He, T. (2015). EveryoneCounts: Data-driven digital advertising with uncertain demand model in metro networks. In F. Luo, K. Ogan, M. J. Zaki, L. Haas, B. C. Ooi, V. Kumar, S. Rachuri, S. Pyne, H. Ho, X. Hu, S. Yu, M. H-I. Hsiao, & J. Li (Eds.), Proceedings - 2015 IEEE International Conference on Big Data, IEEE Big Data 2015 (pp. 898-907). [7363838] (Proceedings - 2015 IEEE International Conference on Big Data, IEEE Big Data 2015). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/BigData.2015.7363838