Evaluation of the association between persistent organic pollutants (POPs) and diabetes in epidemiological studies: A national toxicology program workshop review

Kyla W. Taylor, Raymond F. Novak, Henry A. Anderson, Linda S. Birnbaum, Chad Blystone, Michael De Vito, David Jacobs, Josef Köhrle, Duk Hee Lee, Lars Rylander, Anna Rignell-Hydbom, Rogelio Tornero-Velez, Mary E. Turyk, Abee L. Boyles, Kristina A. Thayer, Lars Lind

Research output: Contribution to journalReview articlepeer-review

260 Scopus citations


Background: Diabetes is a major threat to public health in the United States and worldwide. Understanding the role of environmental chemicals in the development or progression of diabetes is an emerging issue in environmental health. Objective: We assessed the epidemiologic literature for evidence of associations between persistent organic pollutants (POPs) and type 2 diabetes. Methods: Using a PubMed search and reference lists from relevant studies or review articles, we identified 72 epidemiological studies that investigated associations of persistent organic pollutants (POPs) with diabetes. We evaluated these studies for consistency, strengths and weaknesses of study design (including power and statistical methods), clinical diagnosis, exposure assessment, study population characteristics, and identification of data gaps and areas for future research. Conclusions: Heterogeneity of the studies precluded conducting a meta-analysis, but the overall evidence is sufficient for a positive association of some organochlorine POPs with type 2 diabetes. Collectively, these data are not sufficient to establish causality. Initial data mining revealed that the strongest positive correlation of diabetes with POPs occurred with organochlorine compounds, such as trans-nonachlor, dichlorodiphenyldichloroethylene (DDE), polychlorinated biphenyls (PCBs), and dioxins and dioxin-like chemicals. There is less indication of an association between other nonorganochlorine POPs, such as perfluoroalkyl acids and brominated compounds, and type 2 diabetes. Experimental data are needed to confirm the causality of these POPs, which will shed new light on the pathogenesis of diabetes. This new information should be considered by governmental bodies involved in the regulation of environmental contaminants.

Original languageEnglish (US)
Pages (from-to)774-783
Number of pages10
JournalEnvironmental health perspectives
Issue number7
StatePublished - Jul 2013


  • Chemically induced
  • Diabetes
  • Environment
  • Epidemiology
  • Glucose
  • Hormone
  • Insulin
  • Metabolic syndrome
  • Obesity
  • Persistent organic pollutants
  • Pollution
  • Toxicology


Dive into the research topics of 'Evaluation of the association between persistent organic pollutants (POPs) and diabetes in epidemiological studies: A national toxicology program workshop review'. Together they form a unique fingerprint.

Cite this