Evaluation of polyethylene hollow-fiber membranes for hydrogen delivery to support reductive dechlorination in a soil column

X. Ma, P. J. Novak, L. W. Clapp, M. J. Semmens, R. M. Hozalski

Research output: Contribution to journalArticlepeer-review

35 Scopus citations


Engineered systems are often needed to supply an electron donor, such as hydrogen (H2), to the subsurface to stimulate the biological dehalogenation of perchloroethene (PCE) to ethene. A column study was performed to evaluate the ability of gas permeable hollow-fiber membranes to supply H2 directly to PCE-contaminated groundwater to facilitate bioremediation. Two glass columns were packed with soil obtained from a trichloroethene-contaminated site at Cape Canaveral, Florida, and were fed a minimal medium spiked with PCE (7μM) for 391 days. The columns were operated in parallel, with one column receiving H2 via polyethylene hollow-fiber membranes (lumen H2 pressure of approximately 1atm) and a control column receiving no H2. PCE was initially dechlorinated at a similar rate and to a similar extent in both columns, likely due to the presence of soil organic matter that was able to support dechlorination. After 265 days of operation, dechlorination performance declined in the control column and the benefits of membrane-supplied H2 became evident. Although the membrane-supplied H2 effectively stimulated PCE dechlorination at the end of the experiment (days 359-391), the system was inefficient in that only 5% of the supplied H2 was used for dechlorination. Most of the remainder was used to support methanogenesis (94%). Despite the dominance of methanogens, nearly complete dechlorination of PCE to ethene was observed in the H2-fed column. In addition to the inefficient use of H2, operational problems included excessive foulant accumulation on the outside of the membrane fibers and water condensation inside the fibers. Use of alternative membrane materials and changes to the operating approach (e.g. pulsing or supplying H2 at low partial pressures) may help to overcome these problems so that this technology can provide effective and stable remediation of aquifers contaminated with chlorinated ethenes.

Original languageEnglish (US)
Pages (from-to)2905-2918
Number of pages14
JournalWater Research
Issue number12
StatePublished - Jul 2003

Bibliographical note

Funding Information:
This study was principally funded by the United States Department of Defense's Strategic Environmental Research and Development Program, with additional support provided by the University of Minnesota.


  • Bioremediation
  • Groundwater
  • Hollow-fiber membrane
  • Hydrogen
  • Reductive dechlorination
  • Tetrachloroethene


Dive into the research topics of 'Evaluation of polyethylene hollow-fiber membranes for hydrogen delivery to support reductive dechlorination in a soil column'. Together they form a unique fingerprint.

Cite this