Evaluation of load trasfer in the cellulosic-fiber/polymer interphase using a micro-Raman tensile test

William T.Y. Tze, Shane C. O'Neill, Carl P. Tripp, Douglas J. Gardner, Stephen M. Shaler

Research output: Contribution to journalArticlepeer-review

18 Scopus citations


The objectives of this research were (1) to use a Raman micro-spectroscopic technique to determine the tensile stress distributions of a cellulosic-fiber/polymer droplet interphase, and (2) to examine if the stress profile could be used to evaluate load transfer in fiber/polymer adhesion. Cellulosic fibers were treated with various silanes (amino, phenylamino, phenyl, and octadecyl functionalities) and a styrene-maleic anhydride copolymer to create different interphases upon bonding with polystyrene. A single fiber, bonded with a micro-droplet of polystyrene in the mid-span region of its gage length, was strained in tension. Raman spectra were collected at five-micrometer intervals along the embedded region of the fiber. The stress-dependent peak of cellulose (895 cm-1) was analyzed for frequency shift so that the local tensile stress in the interface region could be determined. Results showed that the local tensile stresses of the strained fiber were lower in the embedded region compared to the exposed region, suggesting a transfer of load from the fiber to the matrix polymer. A deeper and sharper decline of the stress profile was observed when the fiber/droplet interaction was enhanced. Further analyses, involving conversion of tensile stress profiles to shear stress distributions in the interphase, confirmed that the micro-Raman/tensile test can be employed to evaluate fiber/matrix interfacial bonding in composites. This success signifies the possibility of evaluating adhesion between cellulosic fibers and brittle polymers, which is difficult to study using common micromechanical tests. Use of the micro-Raman technique can improve our understanding of wood/polymer adhesion.

Original languageEnglish (US)
Pages (from-to)184-195
Number of pages12
JournalWood and Fiber Science
Issue number1
StatePublished - Jan 1 2007


  • Adhesion
  • Cellulose fibers
  • Interphase
  • Load transfer
  • Micromechanical test
  • Polymer
  • Raman spectroscopy
  • Silane


Dive into the research topics of 'Evaluation of load trasfer in the cellulosic-fiber/polymer interphase using a micro-Raman tensile test'. Together they form a unique fingerprint.

Cite this