Abstract
With the major advance in nanotechnology, there has been an emerging interest in applying nanoscale materials to asphalt pavement materials. Among them, considerable interest has been directed to carbon-based nanomaterials, such as carbon nanotubes (CNTs) and graphite nanoplatelets (GNPs). Recent studies have proven that the addition of small percentages of GNPs could significantly reduce the compaction effort required to densify HMA. Viscosity measurements showed, however, that the addition of GNPs increased the viscosity of the binder. This observation pointed towards the presence of a different mechanism responsible for the reduction of compaction effort. A new test method used for lubricants and based on tribology has been recently proposed in order to characterize the lubricating behaviour of asphalt binders. In this study, the tribological characterization of an asphalt binder modified with GNPs was performed. A novel approach in which aggregate surface microtexture was simulated using rough surfaces of the testing fixtures, shows that indeed, the addition of GNPs lowers the friction coefficient and therefore, enhances the lubrication properties of the binder when mixed with mineral aggregates.
Original language | English (US) |
---|---|
Article number | 772 |
Journal | Materials |
Volume | 13 |
Issue number | 3 |
DOIs | |
State | Published - Feb 1 2020 |
Bibliographical note
Funding Information:Acknowledgments: The authors greatly acknowledge the financial support provided by the Center for Transportation Studies at University of Minnesota and the laboratory support from Nynas. The results and opinions presented do not necessarily reflect those of the sponsoring agencies.
Publisher Copyright:
© 2020 by the authors.
Keywords
- Asphalt binder
- Compaction
- Graphite nanoplatelets (GNPs)
- Lubrication
- Nanomaterials
- Tribology
- Viscosity