TY - JOUR
T1 - Evaluation of functional groups responsible for chloroform formation during water chlorination using compound specific isotope analysis
AU - Arnold, William A.
AU - Bolotin, Jakov
AU - Von Gunten, Urs
AU - Hofstetter, Thomas B.
PY - 2008/11/1
Y1 - 2008/11/1
N2 - Compound-specific isotope analysis was used to monitor the δ13C signature of chloroform produced upon the chlorination of model compounds representing natural organic matter functional groups (resorcinol, acetylacetone, acetophenone, phenol, and 2,4,6-trichlorophenol) and a natural water sample. For each model compound, a different apparent kinetic isotope effect was found for chloroform formation. Normal isotope effects were found for resorcinol, acetylacetone, and acetophenone, and ranged from 1.009 ± 0.002 to 1.024 ± 0.004. For the two phenols, an inverse effect was found (0.980 ± 0.004). Lake Zürich water also had a inverse effect (0.997 ± <0.001) indicating that phenols are likely chloroform precursors in NOM, but that other functional groups may also participate. The apparent 13C kinetic isotope effect for the addition/ elimination reaction of 1,1,1-trichloropropanone mediated by OH- to yield chloroform is 1.014 ± 0.002. A comparison of this value to those found for the chlorination of the model precursors and an evaluation of the differences in chloroform production kinetics for the different model precursors argue against a mechanism in which all NOM precursors react via a common intermediate. Compound specific isotope analysis may give additional insights into chloroform formation mechanisms beyond those allowed by current techniques.
AB - Compound-specific isotope analysis was used to monitor the δ13C signature of chloroform produced upon the chlorination of model compounds representing natural organic matter functional groups (resorcinol, acetylacetone, acetophenone, phenol, and 2,4,6-trichlorophenol) and a natural water sample. For each model compound, a different apparent kinetic isotope effect was found for chloroform formation. Normal isotope effects were found for resorcinol, acetylacetone, and acetophenone, and ranged from 1.009 ± 0.002 to 1.024 ± 0.004. For the two phenols, an inverse effect was found (0.980 ± 0.004). Lake Zürich water also had a inverse effect (0.997 ± <0.001) indicating that phenols are likely chloroform precursors in NOM, but that other functional groups may also participate. The apparent 13C kinetic isotope effect for the addition/ elimination reaction of 1,1,1-trichloropropanone mediated by OH- to yield chloroform is 1.014 ± 0.002. A comparison of this value to those found for the chlorination of the model precursors and an evaluation of the differences in chloroform production kinetics for the different model precursors argue against a mechanism in which all NOM precursors react via a common intermediate. Compound specific isotope analysis may give additional insights into chloroform formation mechanisms beyond those allowed by current techniques.
UR - http://www.scopus.com/inward/record.url?scp=55349091669&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=55349091669&partnerID=8YFLogxK
U2 - 10.1021/es800399a
DO - 10.1021/es800399a
M3 - Article
C2 - 19031860
AN - SCOPUS:55349091669
SN - 0013-936X
VL - 42
SP - 7778
EP - 7785
JO - Environmental Science and Technology
JF - Environmental Science and Technology
IS - 21
ER -