Evaluation of carbon isotope flux partitioning theory under simplified and controlled environmental conditions

Joel J. Fassbinder, Timothy J. Griffis, John M. Baker

Research output: Contribution to journalArticlepeer-review

18 Scopus citations


Separation of the photosynthetic (F P) and respiratory (F R) fluxes of net CO 2 exchange (F N) remains a necessary step toward understanding the biological and physical controls on carbon cycling between the soil, biomass, and atmosphere. Despite recent advancements in stable carbon isotope partitioning methodology, several potential limitations can cause uncertainty in the partitioned results. Here, we combined an automated chamber system with a tunable diode laser (TDL) to evaluate carbon isotope partitioning under controlled environmental conditions. Experiments were conducted in a climate controlled greenhouse utilizing both soybean (C 3 pathway) and corn (C 4 pathway) treatments. Under these conditions, net exchange of CO132 and CO122 was obtained with an improved signal to noise ratio. Further, the chamber system was used to estimate soil evaporation (E) and plant transpiration (T), allowing for an improved estimate of the total conductance to CO 2 (g c). This study found that the incorporation of short-term and diel variability in the isotope composition of respiration (δ R) caused F P to nearly double in the corn system while only slightly increasing in the soybean system. Variability in both g c and the CO 2 bundle sheath leakage factor for C 4 plants (φ) also had a significant influence on F P. In addition, chamber measurements of F N and its isotope composition (δ N) indicated that post-illumination processes caused a decrease in plant respiration for up to 3h following light termination. Finally, this study found systematic differences between the isotope and temperature-regression partitioning methods on the diel time scale.

Original languageEnglish (US)
Pages (from-to)154-164
Number of pages11
JournalAgricultural and Forest Meteorology
StatePublished - Feb 15 2012

Bibliographical note

Funding Information:
We thank Matt Erickson and Bill Breiter for their technical assistance. We also thank Zoran Nesic and Dr. T.A. Black, Biometeorology and Soil Physics Group, University of British Columbia, for their help with the implementation of the automated chamber system. We acknowledge the very helpful comments and criticisms of two anonymous reviewers and the guest editor. We also thank Dr. David Bowling, University of Utah, for his detailed comments and criticisms of the revised manuscript. Funding for this research has been provided by the National Science Foundation , ATM-0546476 (TG) and the Office of Science (BER) U.S. Department of Energy , DE-FG02-06ER64316 (TG and JMB).


  • Automated chambers
  • Flux partitioning
  • Isotope composition of respiration
  • Net ecosystem exchange
  • Photosynthetic discrimination
  • Stable carbon isotopes


Dive into the research topics of 'Evaluation of carbon isotope flux partitioning theory under simplified and controlled environmental conditions'. Together they form a unique fingerprint.

Cite this