Evaluation of a two-compartment bayesian forecasting program for predicting vancomycin concentrations

Keith A. Rodvold, Randy D. Pryka, Mark Garrison, John C. Rotschafer

Research output: Contribution to journalArticlepeer-review

47 Scopus citations


The application of a two-compartment Bayesian forecasting program for vancomycin was tested retrospectively in 45 adult patients with stable renal function. Serial blood samples from 25 of these patients were used to determine population-based parameter estimates. The predictive performance of the Bayesian program was assessed by using both non-steady-state and steady-state vancomycin concentrations as feedback information. Overall, the program tended to underpredict peak and trough steady-state vancomycin serum concentrations. A larger mean prediction error (ME) was seen when non-steady-state feedback serum concentrations were used compared with using population-based parameter estimates (no feedback). In contrast, a marked improvement in ME (peaks: -1.03 versus -2.61; troughs: -1.60 versus -2.07) was seen when steady-state feedback serum concentrations were used compared with no feedback data. Precision improved when either feedback serum concentrations were used to predict steady-state peak and trough vancomycin concentrations. The results from this clinical evaluation demonstrate that the initial pharmacokinetic parameter estimates for a two-compartment Bayesian model provided accurate prediction of steady-state vancomycin concentrations. Prediction bias and precision were improved when steady-state vancomycin concentrations were used to determine individualized pharmacokinetic parameters.

Original languageEnglish (US)
Pages (from-to)269-275
Number of pages7
JournalTherapeutic drug monitoring
Issue number3
StatePublished - May 1989


  • Bayesian forecasting
  • Pharmacokinetics
  • Serum concentration
  • Vancomycin

Fingerprint Dive into the research topics of 'Evaluation of a two-compartment bayesian forecasting program for predicting vancomycin concentrations'. Together they form a unique fingerprint.

Cite this