TY - JOUR
T1 - Evaluating eukaryotic secreted protein prediction
AU - Klee, Eric W.
AU - Ellis, Lynda B
PY - 2005/10/14
Y1 - 2005/10/14
N2 - Background: Improvements in protein sequence annotation and an increase in the number of annotated protein databases has fueled development of an increasing number of software tools to predict secreted proteins. Six software programs capable of high throughput and employing a wide range of prediction methods, SignalP 3.0, SignalP 2.0, TargetP 1.01, PrediSi, Phobius, and ProtComp 6.0, are evaluated. Results: Prediction accuracies were evaluated using 372 unbiased, eukaryotic, SwissProt protein sequences. TargetP, SignalP 3.0 maximum S-score and SignalP 3.0 D-score were the most accurate single scores (90-91% accurate). The combination of a positive TargetP prediction, SignalP 2.0 maximum Y-score, and SignalP 3.0 maximum S-score increased accuracy by six percent. Conclusions: Single predictive scores could be highly accurate, but almost all accuracies were slightly less than those reported by program authors. Predictive accuracy could be substantially improved by combining scores from multiple methods into a single composite prediction.
AB - Background: Improvements in protein sequence annotation and an increase in the number of annotated protein databases has fueled development of an increasing number of software tools to predict secreted proteins. Six software programs capable of high throughput and employing a wide range of prediction methods, SignalP 3.0, SignalP 2.0, TargetP 1.01, PrediSi, Phobius, and ProtComp 6.0, are evaluated. Results: Prediction accuracies were evaluated using 372 unbiased, eukaryotic, SwissProt protein sequences. TargetP, SignalP 3.0 maximum S-score and SignalP 3.0 D-score were the most accurate single scores (90-91% accurate). The combination of a positive TargetP prediction, SignalP 2.0 maximum Y-score, and SignalP 3.0 maximum S-score increased accuracy by six percent. Conclusions: Single predictive scores could be highly accurate, but almost all accuracies were slightly less than those reported by program authors. Predictive accuracy could be substantially improved by combining scores from multiple methods into a single composite prediction.
UR - http://www.scopus.com/inward/record.url?scp=27644444255&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=27644444255&partnerID=8YFLogxK
U2 - 10.1186/1471-2105-6-256
DO - 10.1186/1471-2105-6-256
M3 - Article
C2 - 16225690
AN - SCOPUS:27644444255
VL - 6
JO - BMC Bioinformatics
JF - BMC Bioinformatics
SN - 1471-2105
M1 - 256
ER -