Eutrophication Drives Extreme Seasonal CO2 Flux in Lake Ecosystems

Ana M. Morales-Williams, Alan D. Wanamaker, Clayton J. Williams, John A. Downing

Research output: Contribution to journalArticle

Abstract

Lakes process a disproportionately large fraction of carbon relative to their size and spatial extent, representing an important component of the global carbon cycle. Alterations of ecosystem function via eutrophication change the balance of greenhouse gas flux in these systems. Without eutrophication, lakes are net sources of CO2 to the atmosphere, but in eutrophic lakes this function may be amplified or reversed due to cycling of abundant autochthonous carbon. Using a combination of high-frequency and discrete sensor measurements, we calculated continuous CO2 flux during the ice-free season in 15 eutrophic lakes. We found net CO2 influx over our sampling period in 5 lakes (− 47 to − 1865 mmol m−2) and net efflux in 10 lakes (328 to 11,755 mmol m−2). Across sites, predictive models indicated that the highest efflux rates were driven by nitrogen enrichment, and influx was best predicted by chlorophyll a concentration. Regardless of whether CO2 flux was positive or negative, stable isotope analyses indicated that the dissolved inorganic carbon pool was not derived from heterotrophic degradation of terrestrial organic carbon, but from degradation of autochthonous organic carbon, mineral dissolution, and atmospheric uptake. Optical characterization of dissolved organic matter revealed an autochthonous organic matter pool. CO2 influx was correlated with autochthony, while efflux was correlated with total nitrogen and watershed wetland cover. Our findings suggest that CO2 uptake by primary producers during blooms can contribute to continuous CO2 influx for days to months. Conversely, eutrophic lakes in our study that were net sources of CO2 to the atmosphere showed among the highest rates reported in the literature. These findings suggest that anthropogenic eutrophication has substantially altered biogeochemical processing of carbon on Earth.

Original languageEnglish (US)
JournalEcosystems
DOIs
StateAccepted/In press - 2020

Keywords

  • CO flux
  • DOM
  • eutrophication
  • nitrogen

Fingerprint Dive into the research topics of 'Eutrophication Drives Extreme Seasonal CO<sub>2</sub> Flux in Lake Ecosystems'. Together they form a unique fingerprint.

  • Cite this