TY - JOUR
T1 - Estimation of the CSA-ODF using bayesian compressed sensing of multi-shell HARDI
AU - Duarte-Carvajalino, Julio M.
AU - Lenglet, Christophe
AU - Xu, Junqian
AU - Yacoub, Essa
AU - Ugurbil, Kamil
AU - Moeller, Steen
AU - Carin, Lawrence
AU - Sapiro, Guillermo
N1 - Publisher Copyright:
© 2013 Wiley Periodicals, Inc.
PY - 2014/11/1
Y1 - 2014/11/1
N2 - Purpose: Diffusion MRI provides important information about the brain white matter structures and has opened new avenues for neuroscience and translational research. However, acquisition time needed for advanced applications can still be a challenge in clinical settings. There is consequently a need to accelerate diffusion MRI acquisitions.Methods: A multi-task Bayesian compressive sensing (MTBCS) framework is proposed to directly estimate the constant solid angle orientation distribution function (CSA-ODF) from under-sampled (i.e., accelerated image acquisition) multi-shell high angular resolution diffusion imaging (HARDI) datasets, and accurately recover HARDI data at higher resolution in q-space. The proposed MT-BCS approach exploits the spatial redundancy of the data by modeling the statistical relationships within groups (clusters) of diffusion signal. This framework also provides uncertainty estimates of the computed CSA-ODF and diffusion signal, directly computed from the compressive measurements. Experiments validating the proposed framework are performed using realistic multi-shell synthetic images and in vivo multi-shell high angular resolution HARDI datasets.Results: Results indicate a practical reduction in the number of required diffusion volumes (q-space samples) by at least a factor of four to estimate the CSA-ODF from multi-shell data.Conclusion: This work presents, for the first time, a multi-task Bayesian compressive sensing approach to simultaneously estimate the full posterior of the CSA-ODF and diffusionweighted volumes from multi-shell HARDI acquisitions. It demonstrates improvement of the quality of acquired datasets by means of CS de-noising, and accurate estimation of the CSAODF, as well as enables a reduction in the acquisition time by a factor of two to four, especially when "staggered" q-space sampling schemes are used. The proposed MT-BCS framework can naturally be combined with parallel MR imaging to further accelerate HARDI acquisitions.
AB - Purpose: Diffusion MRI provides important information about the brain white matter structures and has opened new avenues for neuroscience and translational research. However, acquisition time needed for advanced applications can still be a challenge in clinical settings. There is consequently a need to accelerate diffusion MRI acquisitions.Methods: A multi-task Bayesian compressive sensing (MTBCS) framework is proposed to directly estimate the constant solid angle orientation distribution function (CSA-ODF) from under-sampled (i.e., accelerated image acquisition) multi-shell high angular resolution diffusion imaging (HARDI) datasets, and accurately recover HARDI data at higher resolution in q-space. The proposed MT-BCS approach exploits the spatial redundancy of the data by modeling the statistical relationships within groups (clusters) of diffusion signal. This framework also provides uncertainty estimates of the computed CSA-ODF and diffusion signal, directly computed from the compressive measurements. Experiments validating the proposed framework are performed using realistic multi-shell synthetic images and in vivo multi-shell high angular resolution HARDI datasets.Results: Results indicate a practical reduction in the number of required diffusion volumes (q-space samples) by at least a factor of four to estimate the CSA-ODF from multi-shell data.Conclusion: This work presents, for the first time, a multi-task Bayesian compressive sensing approach to simultaneously estimate the full posterior of the CSA-ODF and diffusionweighted volumes from multi-shell HARDI acquisitions. It demonstrates improvement of the quality of acquired datasets by means of CS de-noising, and accurate estimation of the CSAODF, as well as enables a reduction in the acquisition time by a factor of two to four, especially when "staggered" q-space sampling schemes are used. The proposed MT-BCS framework can naturally be combined with parallel MR imaging to further accelerate HARDI acquisitions.
KW - Bayesian compressed sensing (BCS)
KW - Constant solid angle (CSA)
KW - Dirichlet process
KW - High angular resolution diffusion imaging (HARDI)
KW - Multi-task
KW - Orientation distribution function (ODF)
UR - http://www.scopus.com/inward/record.url?scp=84907919437&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84907919437&partnerID=8YFLogxK
U2 - 10.1002/mrm.25046
DO - 10.1002/mrm.25046
M3 - Article
C2 - 24338816
AN - SCOPUS:84907919437
SN - 0740-3194
VL - 72
SP - 1471
EP - 1485
JO - Magnetic resonance in medicine
JF - Magnetic resonance in medicine
IS - 5
ER -