Abstract
This paper provides a quantitative method for estimating the risk associated with candidate transportation technology, before it is developed and deployed. The proposed solution extends previous methods that rely exclusively on low-fidelity human-in-the-loop experimental data, or high-fidelity traffic data, by adopting a multifidelity approach that leverages data from both low- and high-fidelity sources. The multifidelity method overcomes limitations inherent to existing approaches by allowing a model to be trained inexpensively, while still assuring that its predictions generalize to the real-world. This allows for candidate technologies to be evaluated at the stage of conception, and enables a mechanism for only the safest and most effective technology to be developed and released.
Original language | Undefined/Unknown |
---|---|
Journal | ICML Submission |
State | Published - Jan 30 2017 |
Keywords
- stat.AP
- stat.ML