TY - JOUR

T1 - Estimating Litter Decomposition Rate in Single-Pool Models Using Nonlinear Beta Regression

AU - Laliberté, Etienne

AU - Adair, E. Carol

AU - Hobbie, Sarah E.

PY - 2012/9/25

Y1 - 2012/9/25

N2 - Litter decomposition rate (k) is typically estimated from proportional litter mass loss data using models that assume constant, normally distributed errors. However, such data often show non-normal errors with reduced variance near bounds (0 or 1), potentially leading to biased k estimates. We compared the performance of nonlinear regression using the beta distribution, which is well-suited to bounded data and this type of heteroscedasticity, to standard nonlinear regression (normal errors) on simulated and real litter decomposition data. Although the beta model often provided better fits to the simulated data (based on the corrected Akaike Information Criterion, AICc), standard nonlinear regression was robust to violation of homoscedasticity and gave equally or more accurate k estimates as nonlinear beta regression. Our simulation results also suggest that k estimates will be most accurate when study length captures mid to late stage decomposition (50-80% mass loss) and the number of measurements through time is ≥5. Regression method and data transformation choices had the smallest impact on k estimates during mid and late stage decomposition. Estimates of k were more variable among methods and generally less accurate during early and end stage decomposition. With real data, neither model was predominately best; in most cases the models were indistinguishable based on AICc, and gave similar k estimates. However, when decomposition rates were high, normal and beta model k estimates often diverged substantially. Therefore, we recommend a pragmatic approach where both models are compared and the best is selected for a given data set. Alternatively, both models may be used via model averaging to develop weighted parameter estimates. We provide code to perform nonlinear beta regression with freely available software.

AB - Litter decomposition rate (k) is typically estimated from proportional litter mass loss data using models that assume constant, normally distributed errors. However, such data often show non-normal errors with reduced variance near bounds (0 or 1), potentially leading to biased k estimates. We compared the performance of nonlinear regression using the beta distribution, which is well-suited to bounded data and this type of heteroscedasticity, to standard nonlinear regression (normal errors) on simulated and real litter decomposition data. Although the beta model often provided better fits to the simulated data (based on the corrected Akaike Information Criterion, AICc), standard nonlinear regression was robust to violation of homoscedasticity and gave equally or more accurate k estimates as nonlinear beta regression. Our simulation results also suggest that k estimates will be most accurate when study length captures mid to late stage decomposition (50-80% mass loss) and the number of measurements through time is ≥5. Regression method and data transformation choices had the smallest impact on k estimates during mid and late stage decomposition. Estimates of k were more variable among methods and generally less accurate during early and end stage decomposition. With real data, neither model was predominately best; in most cases the models were indistinguishable based on AICc, and gave similar k estimates. However, when decomposition rates were high, normal and beta model k estimates often diverged substantially. Therefore, we recommend a pragmatic approach where both models are compared and the best is selected for a given data set. Alternatively, both models may be used via model averaging to develop weighted parameter estimates. We provide code to perform nonlinear beta regression with freely available software.

UR - http://www.scopus.com/inward/record.url?scp=84866648685&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84866648685&partnerID=8YFLogxK

U2 - 10.1371/journal.pone.0045140

DO - 10.1371/journal.pone.0045140

M3 - Article

C2 - 23049771

AN - SCOPUS:84866648685

SN - 1932-6203

VL - 7

JO - PloS one

JF - PloS one

IS - 9

M1 - e45140

ER -