TY - JOUR
T1 - Equation of state and beginning of thermalization after preheating
AU - Podolsky, Dmitry
AU - Felder, Gary N.
AU - Kofman, Lev
AU - Peloso, Marco
PY - 2006/1/15
Y1 - 2006/1/15
N2 - We study the out-of-equilibrium nonlinear dynamics of fields after post-inflationary preheating. During preheating, the energy in the homogeneous inflaton is exponentially rapidly transfered into highly occupied out-of-equilibrium inhomogeneous modes, which subsequently evolve towards equilibrium. The infrared modes excited during preheating evolve towards a saturated distribution long before thermalization completes. We compute the equation of state during and immediately after preheating. It rapidly evolves towards radiation domination long before the actual thermal equilibrium is established. The exact time of this transition is a nonmonotonic function of the coupling between the inflaton and the decay products, and it varies only very weakly (around 10-35s) as this coupling changes over several orders of magnitude. This result is applied to refine the relation between the number of e-foldings N and the physical wavelength of perturbations generated during inflation. We also discuss the implications for the theory of modulated perturbations from preheating. We finally argue that many questions of the thermal history of the universe should be addressed in terms of prethermalization, illustrating this point with a calculation of perturbative production of gravitinos immediately after chaotic inflation. We also highlight the effects of three-legs inflaton interactions on the dynamics of preheating and thermalization in an expanding universe.
AB - We study the out-of-equilibrium nonlinear dynamics of fields after post-inflationary preheating. During preheating, the energy in the homogeneous inflaton is exponentially rapidly transfered into highly occupied out-of-equilibrium inhomogeneous modes, which subsequently evolve towards equilibrium. The infrared modes excited during preheating evolve towards a saturated distribution long before thermalization completes. We compute the equation of state during and immediately after preheating. It rapidly evolves towards radiation domination long before the actual thermal equilibrium is established. The exact time of this transition is a nonmonotonic function of the coupling between the inflaton and the decay products, and it varies only very weakly (around 10-35s) as this coupling changes over several orders of magnitude. This result is applied to refine the relation between the number of e-foldings N and the physical wavelength of perturbations generated during inflation. We also discuss the implications for the theory of modulated perturbations from preheating. We finally argue that many questions of the thermal history of the universe should be addressed in terms of prethermalization, illustrating this point with a calculation of perturbative production of gravitinos immediately after chaotic inflation. We also highlight the effects of three-legs inflaton interactions on the dynamics of preheating and thermalization in an expanding universe.
UR - http://www.scopus.com/inward/record.url?scp=32644472802&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=32644472802&partnerID=8YFLogxK
U2 - 10.1103/PhysRevD.73.023501
DO - 10.1103/PhysRevD.73.023501
M3 - Article
AN - SCOPUS:32644472802
SN - 1550-7998
VL - 73
JO - Physical Review D - Particles, Fields, Gravitation and Cosmology
JF - Physical Review D - Particles, Fields, Gravitation and Cosmology
IS - 2
M1 - 023501
ER -