Epstein Barr Virus-Induced 3 (EBI3) Together with IL-12 Negatively Regulates T Helper 17-Mediated Immunity to Listeria monocytogenes Infection

Yeonseok Chung, Tomohide Yamazaki, Byung Seok Kim, Yongliang Zhang, Joseph M. Reynolds, Gustavo J. Martinez, Seon Hee Chang, Hoyong Lim, Mark Birkenbach, Chen Dong

Research output: Contribution to journalArticlepeer-review

14 Scopus citations

Abstract

Although the protective functions by T helper 17 (Th17) cytokines against extracellular bacterial and fungal infection have been well documented, their importance against intracellular bacterial infection remains unclear. Here, we investigated the contribution of Th17 responses to host defense against intracellular bacteria Listeria monocytogenes and found that Th17 cell generation was suppressed in this model. Unexpectedly, mice lacking both p35 and EBI3 cleared L. monocytogenes as efficiently as wild-type mice, whereas p35-deficient mice failed to do so. Furthermore, both innate cells and pathogen-specific T cells from double-deficient mice produced significantly higher IL-17 and IL-22 compared to wild-type mice. The bacterial burden in the liver of double-deficient mice treated with anti-IL-17 was significantly increased compared to those receiving a control Ab. Transfer of Th17 cells specific for listeriolysin O as well as administration of IL-17 and IL-22 significantly suppressed bacterial growth in p35-deficient mice, indicating the critical contribution of Th17 responses to host defense against the intracellular pathogen in the absence of IL-12 and proper Th1 responses. Our findings unveil a novel immune evasion mechanism whereby the intracellular bacteria exploit IL-27EBI3 to suppress Th17-mediated protective immunity.

Original languageEnglish (US)
Article numbere1003628
JournalPLoS pathogens
Volume9
Issue number9
DOIs
StatePublished - Sep 2013

Fingerprint Dive into the research topics of 'Epstein Barr Virus-Induced 3 (EBI3) Together with IL-12 Negatively Regulates T Helper 17-Mediated Immunity to Listeria monocytogenes Infection'. Together they form a unique fingerprint.

Cite this