Projects per year
Abstract
SrTiO 3 (STO) is an incipient ferroelectric perovskite oxide for which the onset of ferroelectric order is suppressed by quantum fluctuations. This property results in a very large increase in static dielectric constant from ∼300 at room temperature to ∼20,000 at liquid He temperature in bulk single crystals. However, the low-temperature dielectric constant of epitaxial STO films is typically a few hundred to a few thousand. Here, we use all-epitaxial capacitors of the form n-STO/undoped STO/n-STO (001) prepared by hybrid molecular beam epitaxy, to demonstrate intrinsic dielectric constants of an unstrained STO (001) film exceeding 25,000. We show that the n-STO/undoped STO interface plays a critically important role not previously considered in determining the dielectric properties that must be properly accounted for to determine the intrinsic dielectric constant.
Original language | English (US) |
---|---|
Article number | e2202189119 |
Pages (from-to) | e2202189119 |
Journal | Proceedings of the National Academy of Sciences of the United States of America |
Volume | 119 |
Issue number | 23 |
DOIs | |
State | Published - Jun 7 2022 |
Bibliographical note
Funding Information:ACKNOWLEDGMENTS. We thank Boris Shklovskii and Yi Huang for useful discussions. This work was primarily supported by the Air Force Office of Scientific Research through Grant FA9550-21-1-0025 and National Science Foundation (NSF) through the Materials Research Science and Engineering Centers (MRSEC) program under Award DMR-2011401. This work is also partially supported by the Vannevar Bush Faculty Fellowship and by the NSF through DMR-1741801. MBE growth was supported by the US Department of Energy (DOE) through Grant DE-SC002021. Parts of this work were carried out at the Characterization Facility, University of Minnesota, which receives partial support from the NSF through the MRSEC program under Award DMR-2011401. Device fabrication was carried out at the Minnesota Nano Center, which is supported by the NSF through the National Nano Coordinated Infrastructure under Award ECCS-1542202. The work at Pacific Northwest National Laboratory was supported by the US DOE, Office of Science, Division of Materials Sciences and Engineering under Award 10122.
Publisher Copyright:
Copyright © 2022 the Author(s).
Keywords
- antiferrodistortive transition
- dielectric constant
- ferroelectricity
- SrTiO3 film
- SrTiO film
- Oxides
- Electrons
MRSEC Support
- Primary
PubMed: MeSH publication types
- Journal Article
Fingerprint
Dive into the research topics of 'Epitaxial SrTiO3 films with dielectric constants exceeding 25,000'. Together they form a unique fingerprint.Projects
- 2 Active
-
University of Minnesota Materials Research Science and Engineering Center (DMR-2011401)
Leighton, C. (PI) & Lodge, T. (CoI)
THE NATIONAL SCIENCE FOUNDATION
9/1/20 → 8/31/26
Project: Research project
-
IRG-1: Ionic Control of Materials
Leighton, C. (Leader), Birol, T. (Senior Investigator), Fernandes, R. M. (Senior Investigator), Frisbie, D. (Senior Investigator), Greven, M. (Senior Investigator), Jalan, B. (Senior Investigator), Mkhoyan, A. (Senior Investigator), Walter, J. (Senior Investigator) & Wang, X. (Senior Investigator)
9/1/20 → …
Project: Research project